Prospects for PPS detectors in Run 3

Nicola Turini
Univ. of Siena and INFN

4th Elba Workshop on Forward Physics @ LHC Energy
25-5-2018
Outline

• Roman Pots
• Tracking Detectors
• Timing Detectors
• Precision Clock
• Daq
• Trigger
Roman Pots

• Horizontal Pots
 – 2 tracking stations per arm
 • Pixel detectors
 – 2 timing stations per arm
 • Double diamonds & UFSD

• Vertical Pots (Alignment using elastic events)
 – 4 tracking stations per arm
 • 2 top
 • 2 bottom
Roman Pots
Tracking

- Pixel detectors
 - Good resolution
 - Best acceptance on the farthest pots (beam smaller)
 - Little modification on mechanics (motorize packages)
 - Radiation damage on electronics
 - Study of new FEE from phase 2 upgrades
 - Make more spares packages
 - Automatic movement of detectors inside the pots
 - Displacement of the pots during tech stops
 - Swapping of the detectors on both arms
Pixels damage

SEC45 220F Efficiency map - 0.6 fb$^{-1}$ after TS2

Damage before TS2

SEC45 220F Efficiency map - 4.0 fb$^{-1}$ after TS2

SEC45 220F Efficiency map - 8.0 fb$^{-1}$ after TS2

SEC45 220F Efficiency map - 11.7 fb$^{-1}$ after TS2

New damaged spot
Timing

- **Strategy**
 - Increase the number of layers of timing detectors
 - 2 stations per arm, one cylindrical and one box
 - Each station with separated cooling
 - Possibility to evolve from pure diamond detectors to UFSD in the three year period with mixed solutions (one pot diamonds and one UFSD)
 - 8 layers with < 50ps resolution per layer ~ 17.5 ps overall or better

- **Diamonds**
 - Double diamonds (on test this year)

- **UFSD**
 - New generation more tolerant to radiation
 - Cooled to -25°C
• Double diamond technology
 – Two crystals on top of each other
 – Same preamplifier with lower impedance
 – Double signal to noise ratio
 – Almost double resolution (50ps)
• Four layer per package
 – 25ps resolution overall
 – Possible improvements with standard electronics
 – Start studying a FEE chip with broadband amplifiers (better S/N)
UFSD

• Tested in 2017 in the real environment
 – CNM production
 – Warm mode (~20°C)
 – Early production
 – Low radiation resistance

• New detectors for special run in 2018
 – FBK production
 – No radiation damage foreseen in low lumi environment
 – 4 layers per package (30-100ps res per plane)
- Lower temperature (-25°C)
- New FEE readout chip (TOFEE)
 - Preamp + discrimination
- Need more channels per surface
 - Resolution degrade rapidly with capacitance
- Larger radiation tolerance tested on new detectors (~10^{15} protons eq)
Precision Clock

- **Clock source**
 - RF differential clock (tested now)
 - Phase shift every Run Start (to be upgraded with special PLL)
 - Optical clock distribution
 - Implemented now on PPS
 - Expandable up to 128 endpoint
 - Jitter < 2ps at the RP stations
 - PLL’s with fixed phase.
DAQ electronics for Timing

- Digitizer board
 - 2 mezzanine
 - HPTDC
 - Sampic (low bandwidth)
- Based on Microsemi Smartfusion FPGA (rad tolerant)
- Upgrade to latest CMS DAQ protocols
- Looking forward for new ps TDC from CERN, eventually design a new mezzanine with the latest hardware.
Proton trigger

• Low Level Trigger (L1)
 – Proton tag on Timing pots (at least one proton on single and on both arms)
 • Source from timing detectors.
 – Coincidence with other L1 algos (calorimetry, muons etc…)

• High Level Trigger (HLT)
 – Proton object in HLT algos.
Conclusions

• PPS is preparing for RUNIII operations
• We foresee a consolidation program with the present technology.
• Tracking stations upgraded with new FEE ASICs, if available, and internal motors for remote displacement respect to the beam
• Timing stations doubled with resolutions <18ps
 – Double diamonds
 – UFSD
• Proton trigger at L1 and HLT