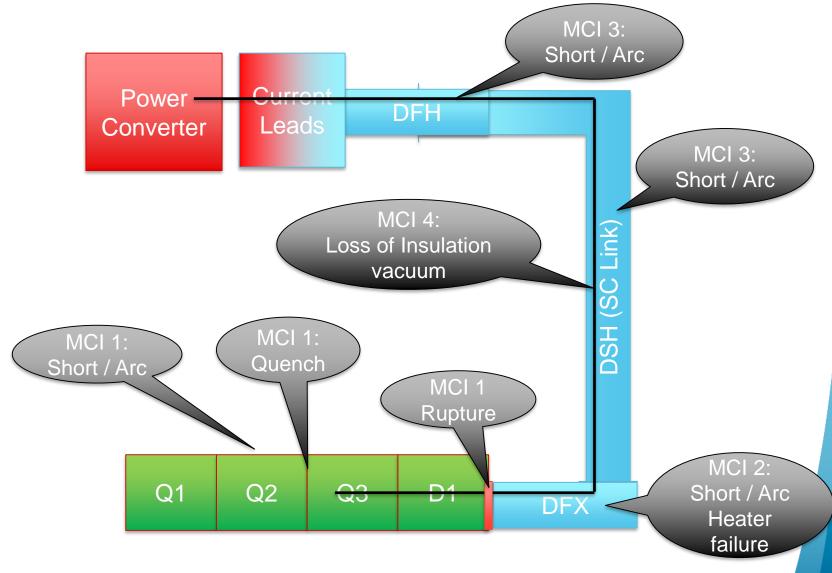

Helium Release from SC Link to UR

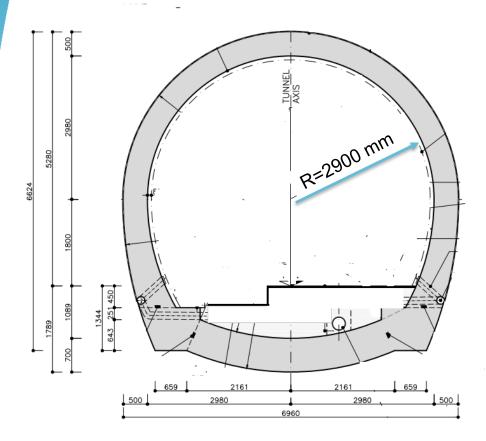
Thomas Otto, PSO Nora Grada, PSSO

Contributions from: A. Ballarino, K. Brodzinski, S. Claudet, A. Devred, V. Parma, P. Retz, R. v. Weelderen


HL-LHC TCC, 22. 2. 2018

Cold Powering layout (schematic)

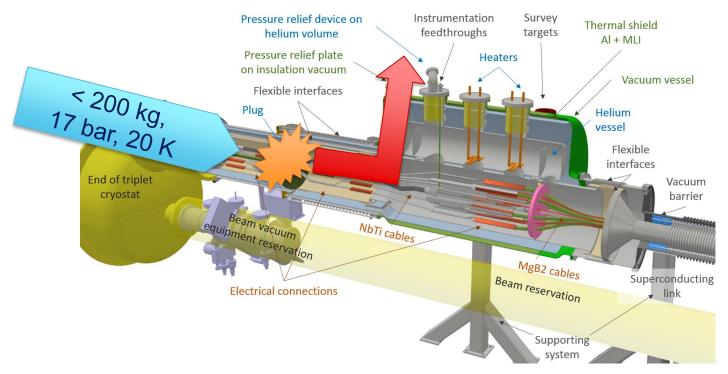
Failure Modes leading to Helium evaporation



SC Link Options

- Different sources give different values for Helium content in SC Link – I use conservative values
- Free volume of SC link approx. 1 m³
- SC link with MgB₂ cable
 - 25 kg Helium gas at p=1.3 bar and T=4.5 15 K
 - Active shield ($V \approx 1.5 \text{ m}^3$, $T \approx 40 \text{ K}$): +2 kg Helium
 - Passive shield (MLI only) optional
 - DFX two-phase cryostat
- SC Link with Nb-Ti cable
 - 140 kg supercritical Helium at p = 3-4 bar and T = 4.5 K
 - Active shield as for MgB₂ link: +2 kg
 - DFX' one phase cryostat

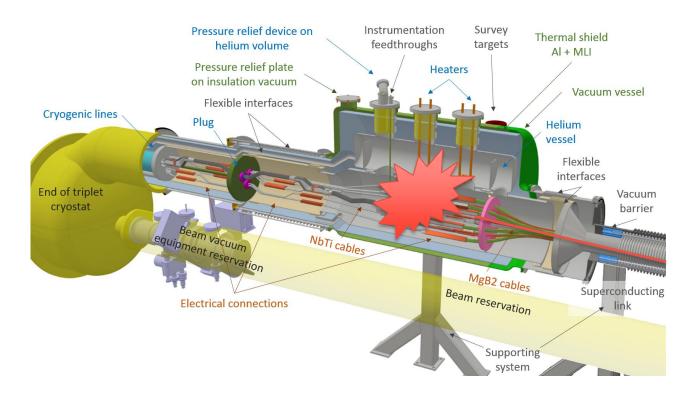
UR Gallery – Accessible during Operation


Volume of the gallery (300 m long) $V_{\rm free} \approx 6000 \, {\rm m}^3$ (25 % occupancy)

Ventilation: mixing by Air handling units Fresh air in UR : 10000 m³/h (1 exchange every 40 minutes)

Smoke extraction system: 18000 m³/h, can be directed in one particular sector

MCI 1: Quench or Short in IT


- Helium (p = 17 bar / T = 20 K) passes though ruptured plug
- Mass- and Heat Flow depends on rupture size:

A (cm2)	0,1	0,2	0,5	1	2	5
Q (kg/s)	0,04	0,08	0,22	0,45	0,90	2,25
φ (kJ/s)	4,42	8,84	24,31	49,7	99,5	248,6

Full evacuation by DFX Safety Device to LHC Tunnel

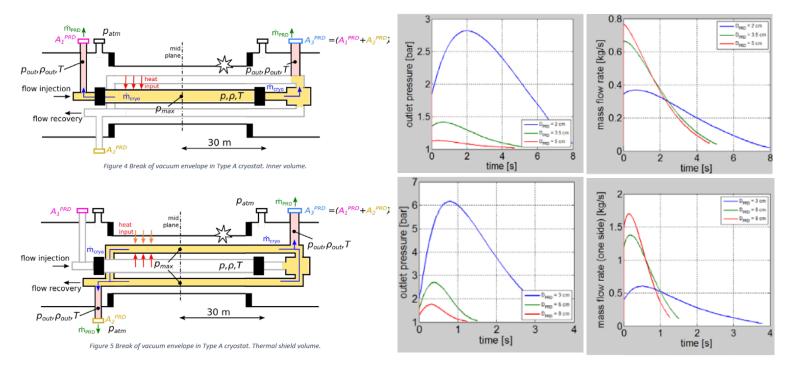
MCI 2: Overheating or Short in DFX

- Helium evaporation in DFX
- MgB₂ may quench resistive heating leads to full loss of Helium in SC Link => MCI 4a / 4b

MCI 3: Internal short or arc

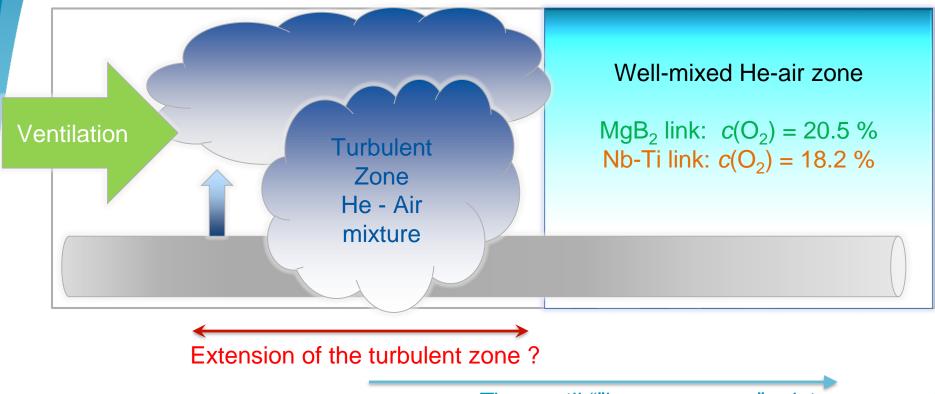
- Consequence: rupture of cryostat to insulation vacuum
 - Size of the hole determines flow to insulation vacuum and release mass flow to tunnel
 - Bottom line: the full contents of the cryostat (and active shield) will be released, as in the LIV event.
 - From the point of view of Helium release, similar to MCI 4a/4b, only the dynamics may change

MCI 4: Loss of Insulation Vacuum in SC Link


- Cryostat surface 25 m², 10 layer MLI
- Heat load from LIV (0.6 W cm⁻²): 150 kW
- Initial Mass Flow through SC Link Safety Device*:
 - MCI 4a: MgB₂ SC link: 2 kg s⁻¹
 - MCI 4b: Nb-Ti SC link: 4.5 Kg s⁻¹

* Estimated with CERN Kryolize Software

MCI 4a: Time evolution after LIV


- "Sizing of pressure relief devices for 60 m semiflexible cryostats"*
- Illustrated option is MgB₂ link with active shield

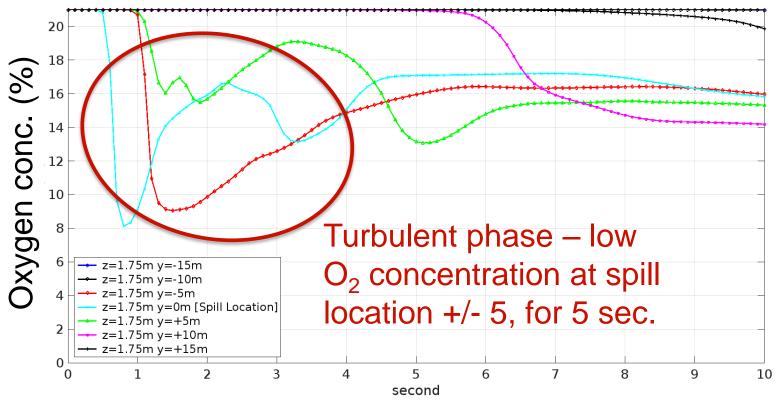
* S. Giannelli, TE-MSC-SCD, EDMS 1722630

Th. Otto & N. Grada, Project Safety

Helium Behaviour after release

Time until ""homogeneous" mixture

These variables depend on the mass flow, the total amount released and the dimension of the tunnel. Two known cases:


- Experimental and simulated He spill tests in LHC,
 125 kg at at 0.1, 0.25 and 1.0 Kg s⁻¹
- Simulated release from SPS CC, 15 kg in very short time

TCC 22. 2. 2018

MCI 4a – Comparison with SPS CC Test

- Small Helium Mass (15 kg vs. 27 kg)
- Rapid release, quickly ceasing

Numerical calculation: R. van Weelderen, F. Aabid, TE-CRG

Th. Otto & N. Grada, Project Safety

MCI 4b: LIV in Nb-Ti cryostat

• Reminder:

- 140 kg He in cryostat, +2 kg in active shield
- 4.5 kg s⁻¹ initial flow, total release within 1 minute (?)
- 800 m³ Helium gas at NTP
- At the release location, a turbulent mixing zone with c(O₂) << 18 % and low temperature will persist for the release location
- Size of turbulent zone ?
- Helium will warm up be mixed by AHU
- Time until mixing
- After turbulence has ceased, c(O₂) close to alarm value of ODH detection

Conclusion

MCI 1: IT Quench and ruptured cryogenic plug

- DFX safety device shall be sized to release all helium in underground
- MCI 2: heater fault or short in DFX
 - Quench of MgB₂ cable, full evaporation => MCI 4a / 4b
- MCI 3: internal short or arc in SC link
 - Full evaporation => MCI 4a / 4b
- MCI 4: Loss of insulation vacuum in SC Link
 - 4a, MgB₂ link: release of up to 25 kg of He in UR: Similar to SPS CC test, short and limited turbulent zone
 - 4b, Nb-Ti link: release of 140 kg He in UR: Size and duration of the turbulent zone: need to evaluate helium behaviour after release

Homework

• WP 6a:

- Terminate design of SC Link
- Define Helium content and its thermodynamic state in cryostat (and shield)
- Dimension safety devices to protect SC Link, DFX and DFH from overpressure
- Determine proper dynamics of Helium outflow
- PSO
 - Model helium behaviour (mixing, purging) after release with consideration of the ventilation
 - Decide on ventilation options in case of He release: use smoke extraction, stop AHUs to allow stratification ...
- PSO with WP 9:
 - Analyse cryoplant and QXL

