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What we do with ML today
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Centralised task (in online or offline reconstruction) 
Analysis-specific task (by users on local computing 
infrastructures)

๏ Classification:  

๏ identify a particle & reject fakes 

๏ identify signal events & reject background 

๏ Regression: 

๏ Measure energy of a particle 

๏ We typically use BDTs for these task 

๏ moved to Deep Learning for analysis-specific 
tasks 

๏ same will happen for centralised tasks 
(eventually)



Example: ML for Higgs discovery
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๏ We were not supposed to discover the Higgs boson as early as 2012 

๏ Given how the machine progressed, we expected discovery by end 2015 /mid 
2016 

๏ We made it earlier thanks (also) to Machine Learning 



๏ Deep Learning will be more and more central 

๏ Analysis-specific applications poses no problem in terms of latency/memory/etc 

๏ Challenges ahead will force us (willing or not) to use DL in many centralised 
tasks 

๏ but we are still far from being ready to a systematic usage of DL in production

What is ahead of us
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HL-LHC: elephant in the room

๏ Flat budget vs. more needs = current rule-
based reconstruction algorithms will not be 
sustainable 

๏ Adopted solution: more granular and complex 
detectors ! more computing resources needed 
! more problems 

๏ Modern Machine Learning might be the way out
5

‣ ~200 collisions/event 
‣ ~minute/event processing time(*) 
‣ (at best)Same computing resources as 
today

This is when the R&D has to 
happen

‣ ~40 collisions/event 
‣ ~10 sec/event processing time 
‣ (at best)Same computing resources as 
today

Today

(*)With nowadays software development 

Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 

23



๏A typical reconstruction chain has 4 steps (*) 
‣ L1 trigger: local, hardware based, on FPGA, @experiment 
site 

‣ HLT: local/global, software based, on CPU, @experiment 
site 

‣ Offline: global, software based, on CPU, @CERN T0 

‣ Analysis: user-specific applications running on the 
grid

Three layers of reconstruction
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๏ The solution to the HL-LHC problem: modern Machine Learning … 

‣ … to be faster  

‣ … to do better 

‣ … to do more 

๏ And this is a NEED for what happens in between data taking and data 
analysis (trigger, reconstruction, simulation, …)

What DL could do for us

7

High-Level  

Trigger
L1 

trig
ger

1 KHz  
1 MB/evt

40 MHz

100 KHz



Machine Learning for event 
processing

Deep



๏ Future detectors will be 3D arrays of sensors with regular 
geometry 

๏ It would be ideal to quickly reconstruct particles directly 
from the image (which is what Deep Learning became famous for) 

Particle reconstruction as image detection
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Deep Learning for Imaging Calorimetry

Vitoria Barin Pacela,⇤ Jean-Roch Vlimant, Maurizio Pierini, and Maria Spiropulu
California Institute of Technology and

CMS

We investigate particle reconstruction using Deep Learning, based on a dataset consisting of single-

particle energy showers in a highly-granular Linear Collider Detector calorimeter with a regular 3D

array of cells. We perform energy regression on photons, electrons, neutral and charged pions, and

discuss the performance of our model in each particle dataset.

I. INTRODUCTION

One the greatest challenges at the LHC at
CERN is to collect and analyse data e�ciently.
Sophisticated machine learning methods have
been researched to tackle this problem, such as
boosted decision trees and deep learning. In
this project, we are using deep neural networks
(DNN) [1] [2] to recognize images originated by
the collisions in the Linear Collider Detector
(LCD) calorimeter [3] [4], designed to operate
at the Compact Linear Collider (CLIC).

Preliminary studies have explored the possi-
bility of reconstructing particles from calorimet-
ric deposits using image recognition techniques
based on convolutional neural networks, using
a dataset of simulated hits of individual par-
ticles on the LCD surface. The dataset con-
sists of calorimetric showers produced by sin-
gle particles (pions, electrons or photons) hit-
ting the surface of an electromagnetic calorime-
ter (ECAL) and eventually showering within
a hadronic calorimeter (HCAL). This project
aimed at reconstructing the energy of particles
through regression.

The code used for defining the mod-
els and training the DNNs is hosted at
https://github.com/vitoriapacela/NotebooksLCD,
and analysis tools are hosted at
https://github.com/vitoriapacela/RegressionLCD.

⇤ vitoria.barinpacela@helsinki.fi

FIG. 1. Visualization of the data. Charged pion

event displayed in the ECAL and HCAL. Every hit

is shown in its respective cell in each of the calorime-

ters. Warmer colors (like orange and pink) repre-

sent higher energies, as 420 GeV, whereas colder

colors, like blue, represent lower energies, as 50

GeV.[5]

II. METHODS

The datasets were simulated as close as pos-
sible to real collision data, using a preliminary
version of the CLIC detector design, imple-
mented in the DDhep software framework [3].
They consist of 3D arrays representing energy
values in the cells of the ECAL and HCAL, and
the true energy of the particle. The ECAL data
arrays have shape 25 x 25 x 25, whereas the
HCAL data arrays have shape 4 x 4 x 60. Events
are of discrete, integer-valued energies over the
range 10-510 GeV, and fixed direction, so that
they impact the center of the calorimeter bar-
rel, with an impact angle of 90�. The datasets
for each particle are stored in the Hierarchical
Data Format (HDF5) [6], which is designed to
store and organize large amounts of data. Each
HDF5 file contains 10 000 events, and there are

See contribution to NIPS workshop

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf


๏ We tried particle ID on a sample of 
simulated events 

๏ one particle/event (e, γ, π0, π) 

๏ Different event representations 

๏ high-level features related to event 
shape (moments of X,Y, and Z 
projections, etc) 

๏ raw data (energy recorded in each cell) 

๏ Pre-filtered pion events to select the 
nasty ones and make the problem harder

Proof of Principle: Particle ID
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See contribution to NIPS workshop

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf


๏ 3D Convolution NN can learn true 
energy of an incoming particle 
from the recorded hit pattern 

๏ Correctly reconstruct energy 

๏ ECAL performances better than 
HCAL (as expected) 

๏ π0 resolution ~ √2 γ resolution 
(as expected) 

๏ No high-level knowledge of physics 
and/or detector features 

๏ used only RAW data as inputs 

๏ In real life, this could be used 
offline, at HLT, and (maybe) even 
at L1

Proof of Principle: Energy Regression

11

3

FIG. 3. Test performed on photons, electrons, neu-

tral and charged pions, comparing the predicted en-

ergy with its true value for each type of particle.

were sorted and divided into ten bins, each one
having an energy interval of 50 GeV, in order
to evaluate the influence of the true energy on
the tested model. In Fig. 5, the absolute means
of the energy di↵erence is proportional to the
true energy value; according to this analsis, the
best performances seem to be between 10 and
200 GeV. In Fig. 6, the relative mean of the
energy di↵erence is approximately constant for
di↵erent energy intervals in the normal datasets
(photons, electrons and neutral pions). In this
analysis, the lowest energy bin (10 to 50 GeV)
has the worst performance, whereas in all the
others the relative means are slightly varying
around 0. In Fig. 7, we notice that the stan-
dard deviations are approximately linearly de-
pendent on the energy value. The model perfor-
mance is good in the normal datasets, since the
standard deviation varies between 0 and 5 GeV.
In Fig. 8, the calorimeter resolution was plot-
ted according to the relative standard deviation
values obtained from the test in each particle
dataset, and in all cases it satisfied the general

FIG. 4. Test performed on photons, electrons, neu-

tral and charged pions, comparing the di↵erence

between the true energy and the predicted energy,

relative to the true energy value, for each type of

particle.
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Etrue
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IV. CONCLUSION

We train a DNN model to solve a regression
problem in the LCD, in which the inputs are
the raw data from highly-granular calorimeters.
We train the model on four di↵erent datasets,
achieving good performance for photons, elec-
trons, and neutral pions, having the mean of the
di↵erence between true and predicted values ap-
proximating to zero by a factor of 10�1. In order
to train the dataset containing charged pions,
it is necessary to select the data that presented
a correlation between the true energy and the
actual shower deposits in the calorimeter. The
training is limited to such limited filtering of the
data, and as a result, the test has a worse per-
formance when compared to the other datasets.
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80 HDF5 files for each particle, totalizing 80
000 events for each dataset. After preprocess-
ing, data is archived using Numpy arrays.

The neural networks are built and studied
using the highly modular Keras [7] 1.0.8 deep
learning libraries running on top of TensorFlow
[8]. All code is written in Python 2.7. The
training and testing of neural networks have
been performed on Caltechs Culture Plate. It
has eight available NVIDIA GeForce GTX 1080
graphical processing units (GPU).

Convolutional Neural Networks (CNNs) [9]
are in general well-suited for image recogni-
tion problems. We use a Convolutional 3D
layer, followed by a MaxPooling3D layer, and a
fully-connected layer at the end of the CNN. A
branched topology is used to input both ECAL
and HCAL data into the neural network, since
they have di↵erent dimensions. The illustra-
tion of the model topology is found in Fig.
2. When applying the Convolution3D in the
ECAL branch, we use a kernel size of 3, and
stride dimensions of 4 x 4 x 4; for the HCAL
branch, the kernel size is 10, and the stride di-
mensions are 2 x 2 x 6, which are proportional
to the input dimensions. The other parameters
were set to default.

The model uses a training set of 40 000
events, a validation set of 10 000 events, and
a test set of 30 000 events. Events are fed into
training in batches of 100 events using an event
generator [10]. The training used the adam
optimizer [11] with default parameters, mean-
squared error (MSE) as the loss function, and a
linear activation function. Early stopping was
performed when training failed to reduce the
validation loss for more than ten epochs.

III. RESULTS

Fig. 3 evaluates the performance of the model
in the testing sets fot photons, electrons, neutral
pions, and charged pions. The distributions ap-
proximate to identity functions in all the cases.
The data is more scattered in the charged pi-
ons plot due to a problem in the dataset, as
explained in Appendix B, but the high density

FIG. 2. Deep Neural Network topology. ECAL

(with dimensions 25 x 25 x 25) and HCAL (with

dimensions 5 x 5 x 60) inputs are processed in di↵er-

ent branches, where each one receives a Convolution

3D layer according to its dimensions, followed by a

MaxPooling 3D layer. The branches are merged af-

ter being flattened, then dense layers are applied to

converge the output to the predicted energy value.

of points along the identity function shows that
the performance is reasonable enough.

When taking the di↵erence between true and
predicted energy, it is relevant to normalize
the such di↵erence, relative to the true energy
value, as detailed in Appendix C. Fig. 4 shows
the distribution of the relative energy di↵erence
Etrue�Epred

Etrue
for tests on the photons, electrons,

charged and neutral pions datasets. For pho-
tons, the mean is (�3.09± 0.05)10�1 %, with a
standard deviation of 2.64 %. For electrons, the
mean is (2.86 ± 0.04)10�1 %, with a standard
deviation of 2.43 %. For neutral pions, the mean
is (0.66 ± 0.07)10�1 %, with a standard devia-
tion of 3.81 %. For charged pions, the mean is
(�6.21± 0.04) %, with a standard deviation of
19.08 %.

From Fig. 5 to 8, the true and prediction data
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FIG. 3. Test performed on photons, electrons, neu-

tral and charged pions, comparing the predicted en-

ergy with its true value for each type of particle.

were sorted and divided into ten bins, each one
having an energy interval of 50 GeV, in order
to evaluate the influence of the true energy on
the tested model. In Fig. 5, the absolute means
of the energy di↵erence is proportional to the
true energy value; according to this analsis, the
best performances seem to be between 10 and
200 GeV. In Fig. 6, the relative mean of the
energy di↵erence is approximately constant for
di↵erent energy intervals in the normal datasets
(photons, electrons and neutral pions). In this
analysis, the lowest energy bin (10 to 50 GeV)
has the worst performance, whereas in all the
others the relative means are slightly varying
around 0. In Fig. 7, we notice that the stan-
dard deviations are approximately linearly de-
pendent on the energy value. The model perfor-
mance is good in the normal datasets, since the
standard deviation varies between 0 and 5 GeV.
In Fig. 8, the calorimeter resolution was plot-
ted according to the relative standard deviation
values obtained from the test in each particle
dataset, and in all cases it satisfied the general
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IV. CONCLUSION

We train a DNN model to solve a regression
problem in the LCD, in which the inputs are
the raw data from highly-granular calorimeters.
We train the model on four di↵erent datasets,
achieving good performance for photons, elec-
trons, and neutral pions, having the mean of the
di↵erence between true and predicted values ap-
proximating to zero by a factor of 10�1. In order
to train the dataset containing charged pions,
it is necessary to select the data that presented
a correlation between the true energy and the
actual shower deposits in the calorimeter. The
training is limited to such limited filtering of the
data, and as a result, the test has a worse per-
formance when compared to the other datasets.
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‣ Competitive and meaningful 
results  

‣ Processing time reduced by 
103 wrt traditional 
approaches 

๏ In real life, this could be 
used while selecting events 
in real time (“trigger”)

Proof of Principle: Energy Regression
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FIG. 8. Calorimeter resolution based on the en-

ergy regression test performed on photons, elec-

trons, neutral and charged pions.
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FIG. 8. Calorimeter resolution based on the en-

ergy regression test performed on photons, elec-

trons, neutral and charged pions.
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Generative Adversarial Networks

• With x10 more data 
being stored during 
HL-LHC, we will need         
> x10 more Monte 
Carlo to do precision 
physics

• This will not be 
possible with current 
generation techniques

• Generative models 
might provide a way 
out of this dead end
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Some images
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Preliminary

¤ Slice energy spectrum

¤ Start with photons & electrons
GAN generated electrons
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Machine Learning for data taking
Deep



A typical example: leptonic triggers  

๏ at the LHC, producing an isolated 
electron or muon is very rare. 
Typical smoking gun that something 
interesting happened (Z,W,top,H 
production) 

๏ Triggers like those are very central 
to ATLAS/CMS physics 

๏ The sample selected is enriched in 
interesting events, but still 
contaminated by non-interesting ones 

๏ Contamination can be reduced with a 
DL classifier that rejects obvious 
false positives looking at the full 
event, not just at the lepton

Cleaning up selected sample

15
See contribution to NIPS workshop

https://dl4physicalsciences.github.io/files/nips_dlps_2017_3.pdf


Event Representations

16

Inspired from https://
arxiv.org/abs/1708.07034

Similar to https://
arxiv.org/abs/1702.00748

https://arxiv.org/abs/1708.07034
https://arxiv.org/abs/1708.07034
https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1702.00748


๏ sparse image with many pixels 

๏ not the kind of image that CNNs usually deal with 

๏ still, reasonable performances (AUC~90%) can be 
obtained

What the event looks like

17

Charged Particles photons neutral hadrons



Event Representations
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QCD
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…

DenseNet on the 
abstract image 

Recurrent nets on the 
list of particles 
(LSTM, GRUs, etc)

Fully-Connected classifier on 
physics-motivated features



๏ With non-trivial event 
representation, can drop 
false positives by factor 10 
with 99% true-positive rate

Proof of principle: trigger cleanup

19
See contribution to NIPS workshop

https://dl4physicalsciences.github.io/files/nips_dlps_2017_3.pdf


The importance of being fast
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Offline Energy
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Analyses start 
where trigger 
is efficient

These events are collected (at 
CPU/disk cost) and never used

e
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u
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๏ Online vs offline 
reconstruction differences 
are limiting our discovery 
reach 

๏ Seen offline, the online 
selection is a not-flat 
response function 

๏ Forces us to work on tails 
of event distribution, 
reducing sensitivity to 
new physics 

๏ Not optimal use of 
resources 



๏ Having the same reconstruction 
at L1/HLT/Offline would help 
us to recover this lost 
sensitivity … 

๏  … and to free resources that 
could be spent otherwise 
(e.g., looking for tricky new 
physics scenarios) 

๏ This cannot be done exactly 
(offline code too slow) 

๏ But it could be done “in 
average” (offline response 
modelled by ML algorithm)

The importance of being fast
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All collected events are 
used offline
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compressed
model

Keras
TensorFlow

PyTorch
…

tune configuration
precision


reuse/latency

HLS 
project

HLS 
conversion

co-processors

RTL design

model

๏ The L1 trigger is a complicated 
environment 

๏ decision to be taken in ~10 μsec 

๏ only access to local portions of 
the detector 

๏ processing on Xilinx FPGA, with 
limited memory resources 

๏ Some ML already running @L1  

๏ CMS has BDT-based regressions 
coded as look-up tables 

๏ Working to facilitate DL solutions 
@L1 with dedicated library

The frontier: bring DL to L1

22

MACHINE LEARNING @ L1
Many parts of the L1 trigger could benefit machine learning 

clustering, fitting (regression), classification, anomaly detection 

Not just LHC physics or triggering 
DAQ, neutrino physics, intensity frontier, … 

No industry solutions: LHC latency constraints are unheard of  

Why HLS?  HLS allows (super)-fast algorithm development 

Write a tool for machine learning inference* at low latencies:  

4

*for training, GPUs remain top dog

hls  4  ml

hls4ml

HLS  4  ML

HLS4ML: CERN/FNAL/MIT joint effort 
To debut at Connecting The Dots 2018 in Seattle (March 2018)



๏ Work is still preliminary 

๏ Take as use case jet tagging 

๏ get a jet @L1 

๏ from its shape (jet substructure) tell which 
jet it is 

๏ Problem solved with large network (cannot fit 
FPGA) 

๏ Implementing pruning solutions to keep only 
relevant neurons  

๏ Further decrease resources with practical tricks 
& thumb rules (e.g., divisions are expensive)

The frontier: bring DL to L1
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EXAMPLE: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary16 inputs

64 (relu)

32 (relu)

5 (softmax)

32 (relu) Fully connected deep 
neural network

• Starting from 40% pruned 
3-layer model


• Pruning bottom 50%  
of weights and retraining


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., pruning 50%

9

EXAMPLE: NETWORK (NOT JET) PRUNING

Resource usage: 
92% DSP usage for Virtex 7 

61 clocks (305 ns), Pipeline = 1 

Compression (50%) + reuse = 2:  
29% DSP usage for Virtex 7 

60 clocks (300 ns), Pipeline = 2 

12

HLS4ML Preliminary16 inputs

64 (relu)

32 (relu)

5 (softmax)

32 (relu) Fully connected deep 
neural network

EXAMPLE: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary16 inputs

64 (relu)

32 (relu)

5 (softmax)

32 (relu) Fully connected deep 
neural network Full model

After pruning: 
50% compression 
takes 30% Virtex 7 DSPs 
in 60 clock cycles (300 ns)

HLS4ML: CERN/FNAL/MIT joint effort 
To debut at Connecting The Dots 2018 in Seattle (March 2018)



Machine Learning for monitoring
Deep



๏ When taking data, >1 person watches 
for anomalies in the detector 24/7 

๏ At this stage no global processing of 
the event 

๏ Instead, local information from 
detector components available (e.g., 
detector occupancy in a certain time 
window)

Data Quality Monitoring
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A

B

C

Fig. 4 Example of visualization of input data for three DT
chambers. The data in (A) manifest the expected behavior
in spite of having a dead channel in layer 1. The chamber
shown in (B) su↵ers of a region of layer 1 with lower e�ciency,
which should be identified as anomalous. The plot in figure
(C) instead shows regions of low occupancy across the 12
layers and should also classified as faulty. According to the
run log, this e↵ect was induced by a transient problem with
the detector electronic.

use of layer by layer one dimensional linear interpo-
lation to match the size of the smallest layer s in
dataset, where ↵ is an interpolation point:

↵ = j
ni

ns

x̃i,j = frac(↵)(xi,b↵c+1 � xi,b↵c) + xi,b↵c

– smoothing: according to CMS DT experts, misbe-
having channels are problematic only when a cluster
of them, spatially contiguous, is observed. Instead,
isolated misbehaving channels are not considered a
problem. To account for this caveat the one dimen-
sional median filter was applied:

x̂i,j = med(xi,j , xi,j+1, xi,j+2).

– normalization: the occupancy of the chambers in the
input dataset depends on the integration time and
on the LHC beam configuration and intensity i.e.
on the number of LS spanned when creating the
image and corresponding luminosity. The normal-
ization strategy depends on the need of comparing
data across chambers or across runs: the precise pro-
cedure used in the two approaches is described in
Sections 4 and 6 respectively.

A

B

Fig. 5 Example of two kinds of input sample preprocesing.
(A) reshaping each layer directly from acquired (raw) values
using linear interpolation. (B) smoothing the raw data with
median filter before reshaping. The isolated low-occupancy
spot in layer 1, corresponding to a dead channel, is discarded.

3 Machine learning for DQM Anomaly

Detection

Machine learning techniques present several advantages
over the currently adopted procedure. The high data
dimensionality precludes simple parametric density es-
timation of the normal behavior; and statistical testing
is not su�cient, as faulty data must be singled out.
This leaves us with an extremely wide range of meth-
ods, that we will briefly discuss here in the light of both
the operational condition and the a priori knowledge of
the data (for a general survey see [5]).

Anomaly detection techniques usually make at least
one of the two following assumptions: rarity of abnor-
mal events, which are considered outliers with respect
to the normal generating process; and/or partial or
complete lack of representative examples of all type
of behaviors. If such representative examples are avail-
able, anomaly detection reduces to binary classification
(supervised learning), with possibly the help of various
resampling methods [6] or reformulation of the objec-
tive function [7] for dealing with class imbalance. In our

Monitoring Compact Muon Solenoid experiment with artificial neural networks at the LHC at CERN 3

Fig. 2 View on wheel positioning in the detector.

Fig. 3 Numbering schema of the Drift Tube sectors and sta-
tions.

CMS data are organized in acquisition runs (or just
runs in CMS jargon), corresponding to homogeneous
conditions both of the CMS detector and of LHC ac-
celerator. Runs are denoted as integers, with increasing
numbering along time. Their duration is varying from
as little as few seconds to as much as several hours.

Each of them is divided into luminosity sections
(LSs), a time interval corresponding to a fixed beam or-
bits in the LHC and amounting to approximately 23 s.
LSs are numbered progressively from 1 at the start of
each run. A single LS can be identified univocally by
specifying the LS number and the run number.

Runs are grouped together when corresponding to
the same fill, i.e. the time interval between two proton
injections into the LHC. A fill can last for as much as
tens of hours. During the fill, the number of protons in
the beam reduces, due to proton collisions happening
at four interaction points along the ring. As a result of
that, the beam intensity (also referred as luminosity)

decreases along the fill as well as the absolute number
of events.

For each chamber k and each run, the current DQM
infrastructure, [4], records an occupancy plot matrix Ck,
which is the total number of electronic hits at each read-
out channel. The occupancy plot matrix can be viewed
as a varying size two-dimensional array organized along
layer (row) and channel (column) indexes:

Ck = {xk
i,j ; 1  i  l, 0  j < ni},

where l = 12 is the number of layers and ni is the
number of channels in layer i. Formally we should index
the chambers and their components e.g. Ck and xk

i,j but
wherever the discussion concerns a single chamber, we
drop the k index for clarity until Section 6. Figure 4
shows examples of occupancy plot matrices.

In this work we look for an algorithm that identi-
fies faulty chambers. Only data collected during LHC
collision runs, and acquired during year 2016 and 2017
have been used in this study. The dataset is composed
of 21000 chamber samples collected during 84 runs. We
consider two complementary approaches to the prob-
lem:

– Local approach: data collected in each layer is treated
independently from the other layers. The domain
experts regard chambers which have occupancy of
the hits with small variance between neighboring
readout channels as expected behavior. Chambers
which have dead, ine�cient or noisy regions, are
considered problematic, (see figure 4 for reference).
We explore this approach in Section 4.

– Extended local approach: data collected in each cham-
ber is treated independently from the other cham-
bers. We extend the local approach to account for
failures spotted only when the information about all
layers within one chamber is present. We exploit this
approach in the algorithm described in Section 6.

– Global approach: we use the information of all the
chambers for a given run. The geographical infor-
mation in the CMS detector (wheel, station or sec-
tor) impacts the occupancy distribution of the chan-
nel hits. We exploit this information in the test de-
scribed in Section 7.

Regardless of the strategy, the data need to be pre-
processed. Three steps are performed (for visual inter-
pretation, see figure 5):

– standardization of the chamber data: the number of
readout channels in a layer (corresponding to one
row of channels in a muon chamber) varies not only
within the chamber but also depends on the cham-
ber position in the detector. This quantity falls be-
tween 47 and 96. In order to have fixed input di-
mensionality, the matrices were composed with the



๏ Given the nature of these 
data, ConvNN are a natural 
analysis tool. Two 
approaches pursued 

๏ Classify good vs bad 
data. Works if failure 
mode is known 

๏ Use autoencoders to 
assess data “typicality”. 
Generalises to unknown 
failure modes 

Two approaches
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This choice scaled the original 21000 chambers to 228480
samples.

Hit counts in a layer are normalized to a [0, 1] range,
dividing them by the maximum of the absolute occu-
pancy value in the layer:

zi,j =
x̃i,j

max(Xi)
,

The need for normalization comes form the intrinsic
variation of the occupancy depending on the spatial
position of the chamber, that will be described in more
details later (Section 6).

The primary goal of this first experiment is to eval-
uate the potential of the various flavors of Machine
Learning methods. We compare:

– supervised learning, with a) a fully connected neu-
ral network (DNN), and b) a convolutional neural
network (CNN), [16];

– semi-supervised learning, with a) Isolation Forest,
and b) µ-SVM.

– unsupervised with a) a simple statistical indicator,
the variance within the layer, and b) an image pro-
cessing technique, the maximum value of the vector
obtained by the application of a variant of an edge
detection Sobel filter [17]: Si = max(

⇥
�1 0 1

⇤
⇤Xi).

The ground truth has been established on a ran-
dom subset of the dataset, by visually inspecting the
input sample before any processing: 5668 layers have
been labeled as good and 612 as bad. The 9,75% fault
rate is representative of the real situation. With this ra-
tio, both anomaly and outlier detection approach can
be considered. Out of this sample 1134 of good and
123 of bad, corresponding to 20% of the labeled layers,
were reserved to compose the test set. The rest of the
samples were used for training and validation for the
semi-supervised and supervised methods.

The Isolation Forest and µ-SVM were cross-validated
using five consecutive, stratified dataset folds to search
for their corresponding optimal hyper-parameters. Sub-
sequently, the Isolation Forest was retrained using those
hyper-parameters on the full unlabeled dataset, while
µ-SVM was retrained using only negative class.

The architecture of the CNN model with one di-
mensional convolution layers used for this problem is
shown in figure 6. The hidden layers use rectified lin-
ear unit as activation while the final output layer uses
softmax function. We have not applied smoothing pre-
processing step, described in Section 2, allowing the
model to learn its filters. CNN [16] was trained us-
ing Adam [18] optimizer and early stopping mechanism
with patience set to 32 epochs. The model was imple-
mented in Keras [19], using TensorFlow [20] backend.

Fig. 6 Convolutional Neural Network model architecture
used to target local strategy.

Additionally we have weighted our samples to account
for class imbalance. The weight � for a sample in class
 2 {0, 1} is equal to:

� =
|S|

2 · |S |

S = S0 [ S1

The DNN was primary used to benchmark the con-
volution kernels. Similarly to CNN it has one hidden
fully-connected layer with 8 units using rectified linear
unit as activation and a softmax function on the output
layer.

5 Detecting unusual behavior within a chamber

5.1 Motivation

This section presents an experiment focusing on the
extended local approach based on the assumption that
the occupancy pattern within a chamber depends on
the layer information. This strategy aims, for example,
at detecting voltage related problems when a hit oc-
cupancy decreases uniformly in a specific part of the
subdetector e.g. a layer or a group of layers.

5.2 Dataset and methods

As a preliminary step, the chamber occupancy data
in the input dataset were evaluated by the convolu-
tional model presented in Section 4. All chambers with
any layer labeled as faulty were discarded from train-
ing. For simplicity, due to a lack of the middle group
of four layers, chambers located in station 4 were dis-
carded as well. The above changes e↵ectively narrowed
the training dataset to 8452 matrices. The samples were
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A

B

Fig. 7 Example of impact of layer voltage on hit counting.
(A) Operating at 3200 V. (B) Operating at 3450 V. Both
examples should be regarded as anomalies.

composed by concatenating smoothed and standardized
layers within the same chamber C̃ creating matrices of
shape 12⇥46. The hit occupancy within one layer were
normalized using min-max scaler:

Ĉ =
C̃ �min(C̃)

max(C̃)�min(C̃)

This normalized values to [0, 1] range and retained re-
lations between the layers.

In order to evaluate the model, we use a subset of
the data (runs 304737, 304738, 304739, 304740) during
which layer 9 were operating at a di↵erent voltage in
a fraction of the chambers, see figure 7. During runs
304737, 304738, 304739, 304740 at 3450 V, and dur-
ing run 302634 at 3200 V. Due to the physics of gas
ionization by radiation, this results in an absolute dif-
ference in hit counting, which globally a↵ects the de-
tector. As we pointed out in Section 4 a local model
was not trained to detect such behavior as it regards
only 6% of those layers as faulty. The part of the test
set regarded as good chambers is corresponding to a
run 304736 where voltage problem was not present. Fi-
nally, we discard all chambers from good subset having
at least one layer problem according to our local algo-
rithm and finally we visually inspected them to seed
out any type II errors from the test set.

As the cost of labeling samples increases with re-
spect to local approach, we compared only semi-supervised
deep learning methods, including:

– simple bottleneck auto-encoder,
– convolutional auto-encoder,
– denoising auto-encoder,
– auto-encoder with sparsity regularization in hidden

layers.

Similarly to local approach we trained the auto-encoders
using Adam optimizer and early stopping mechanism

A

B

Fig. 8 Simple, denoising, sparse (A) and convolutional (B)
auto-encoder models architecture used to target contextual
strategy.

with the patience set to 32 epochs. Again, the imple-
mentation was prepared using Keras library with Ten-
sorFlow backend. The architecture of the model is shown
in figure 8. A simple, denoising and sparse auto-encoders
share similar architecture with parametric rectified lin-
ear unit as activations, while the convolutional auto-
encoder had a dedicated architecture. All models was
instructed to minimize the mean squared error ✏ be-
tween original, x, and reconstructed, ẍ, samples:

✏ =
1

k

X

k

X

i,j

(xk
i,j � ẍk

i,j)
2

6 Detecting unusual behavior using global

information

6.1 Motivation

This section presents a concept focusing on the global

approach based on the assumption that the occupancy
pattern depends on the chamber position in the detec-
tor, given the cylindrical symmetry of the LHC physics.
For instance the expected hit occupancy of chambers in
wheel 0 (closer to the collision point) will be lower than
chambers in the outer wheels (sitting far from the col-
lision point and protected by more material), whereas
chambers in wheels �2 and +2 are expected to show
similarities, due to the detector and collider symmetry.

A. Pol et al., to appear soon



๏ Given the nature of these 
data, ConvNN are a natural 
analysis tool. Two 
approaches pursued 

๏ Classify good vs bad 
data. Works if failure 
mode is known 

๏ Use autoencoders to 
assess data “typicality”. 
Generalises to unknown 
failure modes 

Two approaches
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Additionally, the experts expect chambers to behave
alike in the context of whole subdetector across di↵er-
ent runs.

The problem is clearly contextual, in the sense that
important explanatory attributes are not part of the
basic data features. Conditional anomaly detection [21]
has been proposed to deal with such situations when
the relevance of external attributes is unknown: for in-
stance, if a set of environmental or technical attributes
were monitored that could impact the behavior of the
detector components. In our case, the spatial position
of the chambers are both our only external attribute,
and their impact is assured. Thus, we are back to a
point anomalies problem.

6.2 Methods

In this approach we have used auto-encoder setup equiv-
alent to a simple bottleneck auto-encoder presented in
Section 5 with the change of the size of a latent layer,
which was decreased to 3 units for visualization pur-
poses.

Global faults were not tracked before by DT experts.
Hence, we are left only with unsupervised methods.

7 Results and Discussion

7.1 Local approach

The performance of the trained models on a held out
test dataset can be seen in figure 9. Due to the simplic-
ity of the model, the training converges to a satisfac-
tory result, despite the small size of the training sam-
ple. As shown in the score distribution of figure 10, the
proposed architecture separates anomalous from nor-
mal layers significantly. Model’s working point was cho-
sen at 0.5 not favoring specificity nor sensibility. When
the cost of type 1 and type 2 errors is defined, the
acceptable range of the working point could be any-
where in [0.1, 0.9] range. Compared to statistical, im-
age processing or other machine learning based solu-
tions, supervised deep learning clearly outperforms the
rest. Although the Area Under Curve (AUC) of the
fully-connected deep neural network is comparable to
the one of CNN, requiring maximum specificity and
sensibility makes it a favorable solution. The relatively
good performance of the basic and unsupervised vari-
ance method, compared to the poor results of the filter,
and the near optimal performance of the DNN, show
that the features to learn are not simple contrasts, al-
though the superior performance of the CNN demon-
strate that the initial edge detection layer is useful.

Fig. 9 ROC and AUC of respective algorithms used in local
approach

Fig. 10 Distribution of scores in local approach

The limited performance of Isolation Forest is likely
to come from the violation of its fundamental assump-
tion, that faults are rare (remember that the fault rate
is in the order of 10%) and similar (masking). The infe-
rior performance of the typical semi-supervised method
(SVM) illustrates the well-known smoothness versus lo-
cality argument for deep learning [13,12]: the di�culty
to model the highly varying decision surfaces produced
by complex dependencies involving many factors.

The algorithm currently implemented in DQM sys-
tem targets a specific failure scenario and evaluates
samples per chamber, unlike our per layer approach.
Although it quantifies severity of the fault, it does not
identify specific layers with problems. Based on the la-
beled data we were able to construct a per-chamber
score to benchmark the algorithm i.e. if it indicates
there is at least one faulty layer in a chamber. While the
algorithm’s specificity was 91%, its sensitivity was only
26%. This appalling hit rate is not surprising as the test
was only targeting identification of dead regions.

Another drawback of the DQM algorithm is its per-
formance in low statistics region i.e. beginning of the
run. As seen in figure 11, convolutional model gradu-
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Fig. 11 Stability of proposed model and the algorithm cur-
rently implemented in production. The three lines correspond
to results based on data from runs 306777, 306793, 306794.

ally adds alarms until reaching stability. The produc-
tion test is doing the opposite, generating a substantial
fraction of false alarms in the early stages of the run.

7.2 Extended local approach

To judge the performance of the auto-encoders, we have
used model’s mean squared error between original sam-
ple and its reconstruction in layer 9 of each chamber
in the test set (see figure 12) as an anomaly indica-
tion. Additionally this error could be quantified with
the severity of the problem as shown in figure 13. Fig-
ure 12 shows good performance of all models, especially
sparse auto-encoder. Although the AUC is not as high
as in local approach it is exclusively because of cham-
bers with layers operating at 3450 V which are di�-
cult to spot using only the occupancy data even with a
visual inspection. The chambers with layers operating
at lower voltage are having clear error separation from
good chambers as seen in figure 13.

As part of the experimental setup we accounted this
approach could cover the local anomalies as well. How-
ever, all the models were not able to find those kind of
anomalies better than a random guess, indicating that
we can get best results when applying both models in
a pipeline.

7.3 Global approach

Global approach is able to spot unusual behavior of
DT chambers taking into account the geographical con-
strains and paves the way to more flexible assessment
by scoring per detector region.

Figure 14 shows an example of latent representa-
tion of the chamber data clustering depending on the
chamber position in the detector. Additionally, while

Fig. 12 ROC and AUC of respective auto-encoders used in
contextual approach

Fig. 13 Mean squared error distribution for auto-encoder
with sparsity regularization.

Fig. 14 Latent representation of the chamber-level data. The
samples cluster according to position in the detector. Here
depending on the station, which correspondns to a distance
to collision point.

investigating latent representation for only one cham-
ber across di↵erent runs in figure 15, the latent rep-
resentation tends to cluster depending on the number
of problematic layers. We believe that this method will
help experts detecting previously unknown failure sce-
narios and with maintaining the list of transient issues.

A. Pol et al., to appear soon



๏ Autoencoder-based 1-class approach 
generalises to later stages of quality 
assessment 

๏ after reconstruction of the events, 
event reconstruction allows a global 
assessment (w.g., looking at 
electrons, muons, etc rather than 
hits in the detector) 

๏ A global autoencoder can spot all 
these features 

๏ Monitoring individual contributions 
to loss function (e.g., MSE) one can 
track the problem back to a specific 
physics object/detector component

Data Quality Certification
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After adding L2 kernel regularizer to the AE

ROC_AUC increased from ~0.9735 to ~0.9782 and this plot also shows 
we are going the right direction 20

Normal lumisection example (good classified as good)

Note the scale! Maximum of ~3 versus 70-100 for upcoming problems. 
22

F. Široký  et al., to appear sooner or later



A roadmap towards HL-LHC

๏ We need to be ready by 2025 (High-Luminosity LHC) 

๏ LHC Run 3 (2020-2022) is the ultimate demonstration opportunity 

๏ produce proof-of-principle studies on simulations and open datasets  

๏ bring ML expertise at CERN and in the experiments 

๏ within experiments, develop/test/deploy ML solutions to solve technical tasks  
29



Backup



๏ CERN Data Science Seminars  

๏ LHC iML working group 

๏ Data Science @HEP workshop series 

๏ CERN 2015 

๏ Simons Foundation (New York) 2016 

๏ Fermilab 2017

Practical infos
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https://indico.cern.ch/category/9320/
https://iml.web.cern.ch
https://indico.cern.ch/event/395374/
https://indico.hep.caltech.edu/indico/conferenceDisplay.py?confId=102
https://indico.fnal.gov/event/13497/

