

EFT Comparison

in collaboration with Ilaria Brivio

Michael Rauch | VBSCAN 2nd Annual Meeting, 20 Jun 2018

INSTITUTE FOR THEORETICAL PHYSICS

EFT progress in WG1

TWiki

EFT Report 1
https://twiki.cern.ch/twiki/bin/view/VBSCan/ShortTermTopics

pre-meeting jointly with WG2 (June 2017)

Indico: https://indico.cern.ch/event/647015/

- meeting in Karlsruhe after MBI (August 2017) Indico: https://indico.cern.ch/event/652320/
- EFT kickoff meeting (December 2017) Indico: https://indico.cern.ch/event/688550/
- WG1 periodic meeting (January 2018) Indico: https://indico.cern.ch/event/689683/
- STSM of Ilaria and MR in Milano (March 2018)
- EFT Comparison meeting in Milano (March 2018) Indico: https://indico.cern.ch/event/709162/

First Steps

Effective Field Theory (EFT) as description of physics at higher energies

$$\mathcal{L} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{EFT}} = \mathcal{L}_{\text{SM}} + \sum_{d > 4} \sum_{i} \frac{f_i^{(d)}}{\Lambda^{d-4}} \mathcal{O}_i^{(d)}$$

- \rightarrow lowest contribution from dimension-6 operators
- \rightarrow define framework for d = 6
 - Iook at Monte Carlo codes and compare them
 - choose 1 or 2 operator sets (bases) for d = 6 (best candidates: Warsaw, HISZ)
 - identify the relevant operators (sizable tree-level interference with SM)
 - select experimentally relevant VBS process (1, possibly 2)
 - define optimal kinematic cuts for signal regions
 - can we neglect some contributions safely?
 - how far can we go? ↔ longitudinal / transverse polarization? identify CP?
 - which input scheme? $\{\alpha, M_Z, G_F\}, \{M_W, M_Z, G_F\}, \ldots$?

Further Steps

- study impact of each operator on cross section / distributions
- look for selection cuts that distinguish between operators
 - \rightarrow reduce number of parameters / look at subsets

"divide and conquer"

- analysis with multiple operators at the same time
- extend to several VBS channels

• . . .

Code Comparison

several implementations available

SMEFTsim

VBFNLO

- Whizard
- $\blacksquare \rightarrow document$ codes and their features

 \rightarrow Agreement?

 \rightarrow Differences understood?

[Brivio, Jiang, Trott] [MR, Zeppenfeld *et al.*] [Reuter, Song; Sekulla *et al.*]

an UFO & FeynRules model with*:

Brivio, Jiang, Trott 1709.06492 feynrules.irmp.ucl.ac.be/wiki/SMEFT

- the complete B-conserving Warsaw basis for 3 generations, including all complex phases and *CP* terms
- 2. automatic field redefinitions to have canonical kinetic terms
- **3.** automatic **parameter shifts** due to the choice of an input parameters set

Main scope:

estimate tree-level $|\mathcal{A}_{SM}\mathcal{A}_{d=6}^*|$ interference \rightarrow th. accuracy \sim %

 st at the moment only LO, unitary gauge implementation

The SMEFTsim package

in 2 independent, equivalent models sets (A, B) for debugging & validation

feynrules.irmp.ucl.ac.be/wiki/SMEFT

Pre-exported UFO files (include restriction cards)

Standard Model Effective Field Theory -- The SMEFTsim package

Authors

Ilaria Brivio, Yun Jiang and Michael Trott

ilaria.brivio@nbi.ku.dk, yunjiang@nbi.ku.dk, michael.trott@cern.ch

NBIA and Discovery Center, Niels Bohr Institute, University of Copenhagen

	Set A		Set B	
	a scheme	m _W scheme	α scheme	m _W scheme
Flavor general SMEFT	SMEFTsim_A_general_alphaScheme_UFO.tar.gz	↓SMEFTsim_A_general_MwScheme_UFO.tar.gz	∳SMEFT_alpha_UFO.zip ൾ	SMEFT_mW_UFO.zip
MFV SMEFT	SMEFTsim_A_MFV_alphaScheme_UFO.tar.gz 🕁	SMEFTsim_A_MFV_MwScheme_UFO.tar.gz 🕁	SMEFT_alpha_MFV_UFO.zip	SMEFT_mW_MFV_UFO.zip ↔
U(3) ⁵ SMEFT	SMEFTsim_A_U35_alphaScheme_UFO.tar.gz 达	SMEFTsim_A_U35_MwScheme_UFO.tar.gz 🕹	SMEFT_alpha_FLU_UFO.zip	SMEFT_mW_FLU_UFO.zip 🕁

VBFNLO

- Implementation of D6 operators available for all VBS processes
- HISZ formulation, i.e. no operators with fermions
- both CP-even and CP-odd operators:

$$\begin{split} \mathcal{O}_{WWW} &= \operatorname{Tr} \left[\widehat{W}^{\mu}{}_{\nu} \widehat{W}^{\nu}{}_{\rho} \widehat{W}^{\rho}{}_{\mu} \right] & \mathcal{O}_{\widetilde{W}WW} &= \operatorname{Tr} \left[\widetilde{W}^{\mu}{}_{\nu} \widehat{W}^{\nu}{}_{\rho} \widehat{W}^{\rho}{}_{\mu} \right] \\ \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \widehat{W}^{\mu\nu} (D_{\nu} \Phi) & \mathcal{O}_{\widetilde{W}} &= (D_{\mu} \Phi)^{\dagger} \widetilde{W}^{\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_{B} &= (D_{\mu} \Phi)^{\dagger} \widehat{B}^{\mu\nu} (D_{\nu} \Phi) & \mathcal{O}_{\widetilde{B}} &= (D_{\mu} \Phi)^{\dagger} \widetilde{B}^{\mu\nu} (D_{\nu} \Phi) \\ \mathcal{O}_{WW} &= \Phi^{\dagger} \widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi & \mathcal{O}_{\widetilde{B}B} &= \Phi^{\dagger} \widetilde{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi \\ \mathcal{O}_{BB} &= \Phi^{\dagger} \widehat{B}_{\mu\nu} \widehat{B}^{\mu\nu} \Phi & \mathcal{O}_{\widetilde{B}B} &= \Phi^{\dagger} \widetilde{B}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi \\ \mathcal{O}_{B\widetilde{W}} &= \Phi^{\dagger} \widehat{B}_{\mu\nu} \widetilde{W}^{\mu\nu} \Phi \\ \mathcal{O}_{D\widetilde{W}} &= \operatorname{Tr} \left[[D^{\mu}, \widetilde{W}^{\nu\rho}] [D_{\mu}, \widetilde{W}_{\nu\rho}] \right] \end{split}$$

(only 5 of the CP-odd operators linearly independent:

$$\mathcal{O}_{B\widetilde{W}} = -2\mathcal{O}_{\widetilde{B}} - \mathcal{O}_{\widetilde{B}B} = -2\mathcal{O}_{\widetilde{W}} - \mathcal{O}_{\widetilde{W}W} \qquad)$$

VBFNLO

- Implementation of D6 operators available for all VBS processes
- HISZ formulation, i.e. no operators with fermions
- both CP-even and CP-odd operators
- unitarization via dipole form factor

$$F = \left(1 + \frac{m_{\text{inv}, \sum \ell}^2}{\Lambda^2}\right)^{-\rho}$$

- *m*_{inv,∑} ℓ: invariant mass of the leptons (~ boson pair)
- A: characteristic scale where form factor effect becomes relevant
- p: exponent controlling the damping

other choices easily implementable

 \rightarrow studies on validity range

```
https://www.itp.kit.edu/vbfnlo
```

Whizard

6-dimensional operators

- ${\cal O}_6=(\Phi^\dagger\Phi)^3$
- ${\cal O}_{\Phi}=\partial_{\mu}(\Phi^{\dagger}\Phi)\partial^{\mu}(\Phi^{\dagger}\Phi)$
- $\mathcal{O}_T = (\Phi^\dagger \overleftrightarrow{D}_\mu \Phi) (\Phi^\dagger \overleftrightarrow{D}^\mu \Phi)$

•
$${\cal O}_{\Phi B}=(\Phi^{\dagger}\Phi)B_{\mu
u}B^{\mu
u}$$

•
$${\cal O}_W=\epsilon^{IJK}W^{I
u}_\mu W^{J
ho}_
u W^{K\mu}_
ho$$

• ${\cal O}_{DB}=(\Phi^{\dagger}\overleftrightarrow{D}^{\mu}\Phi)(\partial^{
u}B_{\mu
u})$

• ${\cal O}_{DW}=(\Phi^{\dagger} au^{I}i\overleftrightarrow{D}^{\mu}\Phi)(D^{
u}W_{\mu
u})^{I}$

•
$${\cal O}_{D\Phi B}=i(D^\mu\Phi)^\dagger(D^
u\Phi)B_{\mu
u}$$

•
$${\cal O}_{D\Phi W}=i(D^\mu\Phi)^\dagger au^I(D^
u\Phi)W^I_{\mu
u}$$

Features

- selected set of D6 operators
- compared to old Madgraph D6 implementation
- no field redefinitions to obtain canonical form

Code Comparison

started late March between MG5_aMC + SMEFTsim and VBFNLO

SMEFTsim	VBFNLO
complete $d = 6$ Warsaw basis	d = 6 HISZ basis d = 8 Éboli basis
tree-level EFT	tree-level EFT
$\{ M_W, M_Z, G_F \}$ input	$\{M_W, M_Z, G_F\}$ input
can compute separately contributions of different order in anomalous coupling	computes squared matrix element with all powers of operator insertions
computes matrix elements using pure EFT expansion	allows unitarization of cross sections by different methods

Testing Setup: Diboson W^+Z

First test with simpler process:

$$pp
ightarrow e^+
u_e \mu^+ \mu^-$$

• $\sqrt{s} = 13$ TeV, LO

• $\mu_F = 91.188 \text{ GeV}, \text{PDF} \text{PDF4LHC15_nlo_mc_pdfas}$

generic cuts:

 $p_{T,\text{miss}} > 20 \text{ GeV}$ $p_{T,\ell} > 20 \text{ GeV}$ $R_{\ell\ell} > 0.4$ $m_{\ell\ell} > 15 \text{ GeV}$

parameters:

widths autocalculated by codes (LO) \rightarrow manually switch off NLO QCD corrections to $W, Z \rightarrow q\bar{q}$ in VBFNLO statistics: MG5_aMC 10⁵ events, VBFNLO 2²⁶ MC points, 6 iterations

Diboson W^+Z **Results**

$$pp
ightarrow e^+
u_e \mu^+ \mu^-$$

code	integrated c.s.
MG5_aMC	$27.30\pm0.03~\text{fb}$
VBFNLO	$\textbf{27.24} \pm \textbf{0.01} \text{ fb}$

Anomalous couplings:

• SM
$$+ \frac{c_W}{\text{TeV}^2} \epsilon_{ijk} W^{i,\mu}{}_{\nu} W^{j,\nu}{}_{\rho} W^{k,\rho}{}_{\mu}$$

• with up to 2 c insertions in $\mathcal{A} \rightarrow$ include c^4 terms in $|\mathcal{A}|^2$

• corresponds to $\mathcal{O}_{WWW} = \frac{f_{WWW}}{\Lambda^2} \operatorname{Tr}[\widehat{W}^{\mu}{}_{\nu}\widehat{W}^{\nu}{}_{\rho}\widehat{W}^{\rho}{}_{\mu}]$ in VBFNLO

• relation:
$$\frac{c_W}{\text{TeV}^2} = \frac{g^3}{4} \frac{f_{WWW}}{\Lambda^2}$$

• example: $c_W = 1$

code	integrated c.s.
MG5_aMC + SMEFTsim	$32.80\pm0.03~\text{fb}$
VBFNLO	$32.78\pm0.01~\text{fb}$

\rightarrow good agreement

Diboson W^+Z **Results**

$$pp
ightarrow e^+
u_e \mu^+ \mu^-$$

 \rightarrow Distributions:

 \rightarrow good agreement within statistical uncertainties

Diboson W^+Z **Results**

$$pp
ightarrow e^+
u_e \mu^+ \mu^-$$

 \rightarrow Distributions:

 \rightarrow good agreement in all tested distributions

\rightarrow continue with VBS

VBS process:

$$pp
ightarrow e^+
u_e \mu^+
u_\mu jj$$

- $\sqrt{s} = 13$ TeV, LO
- µ_F = 91.188 GeV, PDF PDF4LHC15_nlo_mc_pdfas

generic cuts:

$p_{T,j} > 20 \text{ GeV}$	$ \eta_j <$ 4.5	$m_{jj} > 500~{ m GeV}$	$ \Delta\eta_{jj} >$ 2.5
$p_{T,\ell} >$ 20 GeV	$ \eta_\ell <$ 2.5	$m_{\ell\ell} > 15~{ m GeV}$	$p_{T,miss} >$ 40 GeV
$R_{\ell i} > 0.3$	$R_{\ell\ell} > 0.3$		

statistics: MG5_aMC 10⁴ events, VBFNLO 2²⁶ MC points, 6 iterations

code	SM	\mathcal{O}_{WWW}	\mathcal{O}_{WWW} (NP=1)
MG5_aMC + SMEFTsim	1.602 \pm 0.003 fb	$40.36\pm0.01~{ m fb}$	2.854 ± 0.004 fb
VBFNLO	$1.5928 \pm 0.0005 \text{fb}$	$36.89\pm0.02~{ m fb}$	_

 \rightarrow good agreement in SM case, more statistics needed for anomalous couplings

$$pp
ightarrow e^+
u_e \mu^+
u_\mu jj$$

 \rightarrow Distributions:

 \rightarrow good agreement

 $pp
ightarrow e^+
u_e \mu^+
u_\mu jj$

can use feature of MG5_aMC + SMEFTsim: break down insertion of anomalous coupling to different orders \rightarrow handle on EFT expansion

- largest contribution from c_W^4 part
- $\blacksquare \leftrightarrow$ leading term should be linear
- $\blacksquare \leftrightarrow$ large anomalous coupling chosen

 $pp
ightarrow e^+
u_e \mu^+
u_\mu jj$

- anomalous coupling shows large growth at large $m_{4\ell}$ values
- eventually violation of unitarity (break-down of expansion, neglected terms in series become equally relevant)

 $pp \rightarrow e^+ \nu_e \mu^+ \nu_\mu jj$ 0.1 NLO SM MC SM MG5 aMC cw NP < = 1dσ/dm_{e+veμ+vu} [fb/GeV] MG5 aMC cw 0.01 MG5 aMC cw (NP <= 3)MG5 aMC cw NP < = 40.001 Ē 0.0001 500 0 1000 1500 2000 $m_{e^+\nu_e\mu^+\nu_{\mu}}$ [GeV]

- limit of tree-level unitarity in 2 \rightarrow 2 scattering process via partial-wave analysis
- calculated with VBFNLO formfactor tool
- violated for $m_{4\ell} \gtrsim 1.5 \text{ TeV}$

Summary

- comparison of different EFT codes
- first tests successful with
 - SMEFTsim (with MG5_aMC)
 - VBFNLO

[Brivio, Jiang, Trott] [MR, Zeppenfeld *et al.*]

- interesting physics aspects already appearing (linear vs. all insertions)
- extend to more operators
 - $\stackrel{?}{\rightarrow}$ also look at Higgs EFT (different expansion)
- pheno studies
- include other codes
 - Whizard
 - Sherpa + SMEFTsim ?

[Reuter, Song; Sekulla et al.] [Gomez-Ambrosio] Backup

Backup

Form of the Operators

linear EFT:

 $SU(3)_c \times SU(2)_L \times U(1)_Y$ as conserved gauge groups

```
[Buchmüller, Wyler; Hagiwara et al; Grzadkowski et al; ...]
```

building blocks:

- Higgs field Φ
- covariant derivative D^{μ} ($\rightarrow \partial^{\mu}$ when acting on singlets)
- field strength tensors $G^{\mu\nu}$, $W^{\mu\nu}$, $B^{\mu\nu}$
- fermion fields ψ
- \Rightarrow construct all combinations which are
 - Lorentz-invariant
 - invariant under the gauge groups
 - hermitian

Form of the Operators

Example 1:

$$\mathcal{O}_{WW} = \Phi^{\dagger} \widehat{W}_{\mu\nu} \widehat{W}^{\mu\nu} \Phi$$
$$\frac{1}{2} \mathcal{O}_{\phi W} = \frac{1}{2} \operatorname{Tr} \left[\widehat{W}^{\mu\nu} \widehat{W}_{\mu\nu} \right] \Phi^{\dagger} \Phi$$

lead to same contribution to Feynman rules \rightarrow equivalent

Example 2:

$$\begin{aligned} \partial_{\mu} \left(\Phi^{\dagger} \widehat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) \right) \\ &= \left(D_{\mu} \Phi \right)^{\dagger} \widehat{W}^{\mu\nu} \left(D_{\nu} \Phi \right) + \Phi^{\dagger} \left(\partial_{\mu} \widehat{W}^{\mu\nu} \right) \left(D_{\nu} \Phi \right) + \Phi^{\dagger} \widehat{W}^{\mu\nu} \left(D_{\mu} D_{\nu} \Phi \right) \end{aligned}$$

total derivative in Lagrangian gives no contribution to equations of motion

 \rightarrow only two of the operators on right-hand side linearly independent

can use equations of motion to rewrite expressions

 \rightarrow 59 D6 operators (2499 for flavour non-universality) [Grzadkovski *et al.*]

Field redefinitions

Gauge bosons

$$\begin{split} \mathcal{L}_{\text{SMEFT}} &\supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^{I}_{\mu\nu} W^{I\mu\nu} - \frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} + \\ &+ C_{HB} (H^{\dagger} H) B_{\mu\nu} B^{\mu\nu} + C_{HW} (H^{\dagger} H) W^{I}_{\mu\nu} W^{I\mu\nu} \\ &+ C_{HWB} (H^{\dagger} \sigma^{I} H) W^{I}_{\mu\nu} B^{\mu\nu} + C_{HG} (H^{\dagger} H) G^{a}_{\mu\nu} G^{a\mu\nu} \end{split}$$

to have canonically normalized kinetic terms we need to

1. redefine fields and couplings keeping (gV_{μ}) unchanged:

$$\begin{split} \mathcal{B}_{\mu} &\rightarrow \mathcal{B}_{\mu}(1+\mathcal{C}_{HB}v^2) & g_1 \rightarrow g_1(1-\mathcal{C}_{HB}v^2) \\ \mathcal{W}_{\mu}^{I} &\rightarrow \mathcal{W}_{\mu}^{I}(1+\mathcal{C}_{HW}v^2) & g_2 \rightarrow g_2(1-\mathcal{C}_{HW}v^2) \\ \mathcal{G}_{\mu}^{a} \rightarrow \mathcal{G}_{\mu}^{a}(1+\mathcal{C}_{HG}v^2) & g_s \rightarrow g_s(1-\mathcal{C}_{HG}v^2) \end{split}$$

2. correct the rotation to mass eigenstates:

$$\begin{pmatrix} \mathcal{W}_{\mu}^{3} \\ \mathcal{B}_{\mu} \end{pmatrix} = \begin{pmatrix} 1 & -v^{2}C_{HWB}/2 \\ -v^{2}C_{HWB}/2 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix}$$

(equivalent to a shift of the Weinberg angle)

Alonso, Jenkins, Manohar, Trott 1312.2014

Higgs

$$\mathcal{L}_{\rm SMEFT} \supset \frac{1}{2} D_{\mu} H^{\dagger} D^{\mu} H + C_{H_{\Box}} (H^{\dagger} H) (H^{\dagger} \square H) + C_{HD} (H^{\dagger} D_{\mu} H)^{*} (H^{\dagger} D^{\mu} H)$$

to have a canonically normalized kinetic term, in unitary gauge, we need to replace

$$h \rightarrow h \left(1 + v^2 C_{H_{\square}} - \frac{v^2}{4} C_{HD} \right)$$

Alonso, Jenkins, Manohar, Trott 1312.2014

SM case.

Parameters in the canonically normalized Lagrangian : $\bar{v}, \bar{g}_1, \bar{g}_2, s_{\bar{\theta}}$ The values can be inferred from the measurements e.g. of $\{\alpha_{\rm em}, m_Z, G_f\}$:

in the SM at tree-level $\bar{\kappa}=\hat{\kappa}$

SMEFT case.

Parameters in the canonically normalized Lagrangian : $\bar{v}, \bar{g}_1, \bar{g}_2, s_{\bar{\theta}}$ The values can be inferred from the measurements e.g. of $\{\alpha_{\rm em}, m_Z, G_f\}$:

$$\begin{aligned} \alpha_{\rm em} &= \frac{\bar{g}_1 \bar{g}_2}{\bar{g}_1^2 + \bar{g}_2^2} \begin{bmatrix} 1 + \bar{v}^2 C_{HWB} \frac{\bar{g}_2^3 / \bar{g}_1}{\bar{g}_1^2 + \bar{g}_2^2} \end{bmatrix} & \hat{v}^2 = \frac{1}{\sqrt{2}G_f} \\ m_Z &= \frac{\bar{g}_2 \bar{v}}{2c_{\bar{\theta}}} + \delta m_Z(C_i) & \rightarrow \\ G_f &= \frac{1}{\sqrt{2}\bar{v}^2} + \delta G_f(C_i) & \hat{g}_1 = \frac{\sqrt{4\pi\alpha_{\rm em}}}{\cos\hat{\theta}} \\ \hat{g}_2 &= \frac{\sqrt{4\pi\alpha_{\rm em}}}{\sin\hat{\theta}} \end{aligned}$$

1

in the SM at tree-level $\bar{\kappa} = \hat{\kappa}$ in the SMEFT $\bar{\kappa} = \hat{\kappa} + \delta \kappa(C_i)$

To have numerical predictions it is necessary to replace $\bar{\kappa} \rightarrow \hat{\kappa} + \delta \kappa(C_i)$ for all the parameters in the Lagrangian.

 $\{\alpha_{\rm em}, m_Z, G_f\}$ scheme

$$\begin{split} \delta m_Z^2 &= m_Z^2 \, \hat{v}^2 \left(\frac{c_{HD}}{2} + 2c_{\hat{\theta}} s_{\hat{\theta}} c_{HWB} \right) \\ \delta G_f &= \frac{\hat{v}^2}{\sqrt{2}} \left((c_{HI}^{(3)})_{11} + (c_{HI}^{(3)})_{22} - (c_{II})_{1221} \right) \\ \delta g_1 &= \frac{s_{\hat{\theta}}^2}{2(1 - 2s_{\hat{\theta}}^2)} \left(\sqrt{2} \delta G_f + \delta m_Z^2 / m_Z^2 + 2 \frac{c_{\hat{\theta}}^3}{s_{\hat{\theta}}} c_{HWB} \hat{v}^2 \right) \\ \delta g_2 &= -\frac{c_{\hat{\theta}}^2}{2(1 - 2s_{\hat{\theta}}^2)} \left(\sqrt{2} \delta G_f + \delta m_Z^2 / m_Z^2 + 2 \frac{s_{\hat{\theta}}^3}{c_{\hat{\theta}}} c_{HWB} \hat{v}^2 \right) \\ \delta s_{\theta}^2 &= 2 c_{\hat{\theta}}^2 s_{\hat{\theta}}^2 (\delta g_1 - \delta g_2) + c_{\hat{\theta}} s_{\hat{\theta}} (1 - 2s_{\hat{\theta}}^2) c_{HWB} \hat{v}^2 \\ \delta m_h^2 &= m_h^2 \hat{v}^2 \left(2 c_{H_{\square}} - \frac{c_{HD}}{2} - \frac{3 c_H}{2 lam} \right) \end{split}$$

[Brivio]

To have numerical predictions it is necessary to replace $\bar{\kappa} \rightarrow \hat{\kappa} + \delta \kappa(C_i)$ for all the parameters in the Lagrangian.

 $\{m_W, m_Z, G_f\}$ scheme

$$\begin{split} \delta m_Z^2 &= m_Z^2 \, \hat{v}^2 \left(\frac{c_{HD}}{2} + 2c_{\hat{\theta}} s_{\hat{\theta}} c_{HWB} \right) \\ \delta G_f &= \frac{\hat{v}^2}{\sqrt{2}} \left((c_{HI}^{(3)})_{11} + (c_{HI}^{(3)})_{22} - (c_{II})_{1221} \right) \\ \delta g_1 &= -\frac{1}{2} \left(\sqrt{2} \delta G_f + \frac{1}{s_{\hat{\theta}}^2} \frac{\delta m_Z^2}{m_Z^2} \right) \\ \delta g_2 &= -\frac{1}{\sqrt{2}} \delta G_f \\ \delta s_{\theta}^2 &= 2c_{\hat{\theta}}^2 s_{\hat{\theta}}^2 (\delta g_1 - \delta g_2) + c_{\hat{\theta}} s_{\hat{\theta}} (1 - 2s_{\hat{\theta}}^2) c_{HWB} \hat{v}^2 \\ \delta m_h^2 &= m_h^2 \hat{v}^2 \left(2c_{H^{\Box}} - \frac{c_{HD}}{2} - \frac{3c_H}{2lam} \right) \end{split}$$

SMEFTsim: implemented frameworks

completely general flavor indices:

2499 parameters including all complex phases

SMEFTsim: implemented frameworks

$$3 \text{ flavor}_{\text{structures}} \begin{cases} \text{general} \\ U(3)^5 \text{ symmetric} \\ \text{linear MFV} \end{cases} \times 2 \text{ input}_{\text{schemes}} \begin{cases} \hat{\alpha}_{\text{em}}, \hat{m}_Z, \hat{G}_f \\ \hat{m}_W, \hat{m}_Z, \hat{G}_f \end{cases}$$

assume an exact flavor symmetry

$$U(3)^5 = U(3)_q \times U(3)_u \times U(3)_d \times U(3)_I \times U(3)_e$$

under which: $\psi \mapsto U_{\psi}\psi$ for $\psi = \{u, d, q, I, e\}$

• The Yukawas are the only **spurions** breaking the symmetry:

$$Y_u \mapsto U_u Y_u U_q^{\dagger} \qquad Y_d \mapsto U_d Y_d U_q^{\dagger} \qquad Y_l \mapsto U_e Y_l U_l^{\dagger}.$$

► flavor indices contractions are fixed by the symmetry → less parameters Examples: $\begin{aligned}
\mathcal{Q}_{Hu} &= (H^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} H)(\bar{u}_{r}\gamma^{\mu}u_{s}) \,\delta_{rs} \\
\mathcal{Q}_{eB} &= B_{\mu\nu}(\bar{l}_{r}H\sigma^{\mu\nu}e_{s}) \,(\mathbf{Y}_{I})_{rs}
\end{aligned}$

[Brivio]

SMEFTsim: implemented frameworks

 $\begin{array}{c} \mathbf{6} \quad \text{different frameworks implemented:} \\ 3 \quad \text{flavor} \\ \text{structures} \quad \begin{cases} \text{general} \\ U(3)^5 \text{ symmetric} \\ \text{linear MFV} \end{cases} \times 2 \quad \begin{array}{c} \text{input} \\ \text{schemes} \\ \\ \hat{m}_W, \hat{m}_Z, \hat{G}_f \\ \\ \hat{m}_W, \hat{m}_Z, \hat{G}_f \end{cases} \end{cases}$

assume $U(3)^5$ symmetry + CKM only source of \mathcal{LP}

- all Wilson coefficients $\in \mathbb{R}$
- CP odd bosonic operators are absent ($\propto J_{CP} \simeq 10^{-5}$)
- includes the first order in flavor violation expansion. E.g.:

$$\begin{aligned} \mathcal{Q}_{Hu} &= (H^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} H)(\bar{u}_{r}\gamma^{\mu}u_{s}) \left[\mathbb{1} + (\mathbf{Y}_{u}\mathbf{Y}_{u}^{\dagger})\right]_{rs} \\ \mathcal{Q}_{Hq}^{(1)} &= (H^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} H)(\bar{q}_{r}\gamma^{\mu}q_{s}) \left[\mathbb{1} + (\mathbf{Y}_{u}^{\dagger}\mathbf{Y}_{u}) + (\mathbf{Y}_{d}^{\dagger}\mathbf{Y}_{d})\right]_{rs} \\ & \hookrightarrow \bar{u}_{L}\gamma^{\mu} \left[\mathbb{1} + Y_{u}^{\dagger}Y_{u} + V_{\mathrm{CKM}}Y_{d}^{\dagger}Y_{d}V_{\mathrm{CKM}}^{\dagger}\right] u_{L} \\ & + \bar{d}_{L}\gamma^{\mu} \left[\mathbb{1} + V_{\mathrm{CKM}}^{\dagger}Y_{u}^{\dagger}Y_{u}V_{\mathrm{CKM}} + Y_{d}^{\dagger}Y_{d}\right] d_{L} \end{aligned}$$

Unitarization

Anomalous gauge couplings spoil cancellation

 \leftrightarrow effects can become large \rightarrow unitarity violation \rightarrow unphysical

Several solutions:

- consider only unitarity-conserving phase-space regions loses some information \rightarrow possibly reduced sensitivity cut on relevant region might not be directly accessible ($m_{4\ell}$ vs. neutrinos)
- (dipole) form factor multiplying amplitudes

$$\mathcal{F}(s) = \frac{1}{\left(1 + \frac{s}{\Lambda_{FF}^2}\right)^n} \qquad \Lambda_{FF}^2, n: \text{ free parameters}$$

$$K - / T - \text{matrix unitarization} \quad [\text{Alboteanu, Kilian, Reuter, Sekulla]} \text{ based on partial-wave analysis } [Jacob, Wick] \text{ project amplitude back onto } \Lambda_{Fg}^2 \text{ and } \Box_{FF}^2 \text{ (1)}$$

