

PDF Uncertainties in VBS

M. Grossi 1 & J. Novak 2

in collaboration with:

B. Kerševan, A. Nisati, G. Polesello, D. Rebuzzi

 $^{^{1}}$ University of Pavia, INFN, IBM Italy

²University of Ljubljana

PDF sets and their representation

- PDFs contain a lot of uncertain parameters all uncertainties and their correlations need to be represented in a compact way:
 - Monte-Carlo representation
 - Ensemble of PDFs (replicas)
 - Central value given by the average
 - Uncertainty given by the standard deviation
 - Hessian representation
 - Central value + eigenvectors of the covariance matrix in the parameter space
- To evaluate how the PDF uncertainty is propagating to some variable uncertainty (usually cross-section) this variable must be evaluated for each member of PDF set

Calculating PDF uncertainties ¹

- 1. Monte-Carlo representation:
 - (a) Gaussian distribution:

$$\delta^{\rm pdf}\sigma = \sqrt{\frac{1}{N_{\rm mem}} \sum_{k=1}^{N_{\rm mem}} (\sigma^{(k)} - \langle \sigma \rangle)^2}, \qquad \langle \sigma \rangle = \frac{1}{N_{\rm mem}} \sum_{k=1}^{N_{\rm mem}} \sigma^{(k)}$$

(b) Non-Gaussian distribution:

$$\begin{array}{ll} \text{Reorder cross-sections:} & \sigma^{(1)} \leq \sigma^{(2)} \leq \ldots \leq \sigma^{(N_{\text{mem}}-1)} \leq \sigma^{(N_{\text{mem}})} \\ \text{Calculate uncertainty (100 members):} & \delta^{\text{pdf}} \sigma = \frac{\sigma^{(84)} - \sigma^{(16)}}{2} \end{array}$$

2. Hessian representation:

$$\delta^{
m pdf}\sigma = \sqrt{\sum_{k=1}^{N_{
m mem}}(\sigma^{(k)}-\sigma^{(0)})^2}, \qquad \sigma^{(0)}$$
- central PDF

• The N_{mem} is number of PDF error sets - central PDF and eventual parameter variations (α_S) are not included

 $^{^{1}}$ J. Butterworth, et al: PDF4LHC recommendations for LHC Run II, arXiv:1510.03865

PDF + α_S uncertainty ²

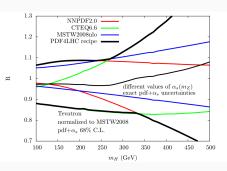
- ullet PDF variation calculated separately at central value of the $lpha_S$
- α_S variation calculated at the borders of the 68% CL interval (two additional members of the set)
 - Current PDG average: $\alpha_S(m_Z^2) = 0.1187 \pm 0.0007$
 - In LHAPDF sets (more conservative) : $\alpha_S(m_Z^2) = 0.118 \pm 0.0015$
- It follows that combined uncertainties can be evaluated as:

$$\delta^{\mathsf{pdf}+\alpha_S} \sigma = \sqrt{(\delta^{\mathsf{pdf}} \sigma)^2 + (\delta^{\alpha_S} \sigma)^2}$$

• All the methods for calculating the PDF and α_S uncertainty are implemented in the LHAPDF::PDFUncertainty structure [LHAPDF6, arXiv:1510.03865]

²J. Butterworth, et al: PDF4LHC recommendations for LHC Run II, arXiv:1510.03865

Reweighting


- Less computationally intense, then generating sample for each member in the PDF set
- \bullet All sets are 100% correlated, which means that statistical error does not affect the uncertainty calculation as it would in case of statistically independent samples
- Statistics of the sample used still contributes to the uncertainty (10 M events in this case)
- LO reweighting from PDF set A to PDF set B:

$$w_{A\to B} = \frac{f_1^B(x_1, Q)f_2^B(x_2, Q)}{f_1^A(x_1, Q)f_2^A(x_2, Q)}$$

 Many event generators have possibility of (N)NLO reweighting: MadGraph5 aMC@NLO, POWHEG, Sherpa, FEWZ, RESBOS

Statistical combinations of PDF sets

- Differences among different sets should be accounted for in PDF uncertainties
- In many cases it is better to take into account more than just one PDF set
- PDF uncertainty deduced from the envelope of bands of different PDF sets can be overestimated. ⇒ Statistical combinations are a better choice [PDF4LHC, arXiv:1510.03865]

Plot taken from M. Bitje, el al.: The PDF4LHC Working Group Interim Recommendations, arXiv:1101.0538

PDF4LHC15 set

- Statistical combination of the CT14 (Hessian), MMHT2014 (Hessian) and NNPDF3.0 (MC) sets
- Available in LHAPDF in three different delivery options: [PDF4LHC, arXiv:1510.03865]
 - Monte-Carlo (CMC-PDFs)
 - Hessian, with 30 eigenvectors (META-PDFs)
 - Hessian, with 100 eigenvector (MCH-PDFs)

PDF set	Pert. order	Error Type	N_{mem}	α_S var.
PDF4LHC15_nlo_100	NLO	symhessian	100	No
PDF4LHC15_nlo_30	NLO	symhessian	30	No
PDF4LHC15_nlo_mc	NLO	replicas	100	No
PDF4LHC15_nlo_30_pdfas	NLO	symhessian+as	32	Yes
PDF4LHC15_nlo_mc_pdfas	NLO	replicas+as	102	Yes

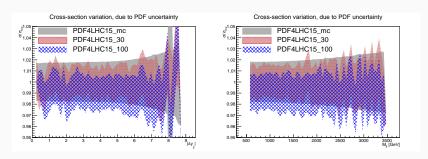
Full-leptonic VBS - Samples

- Process: $pp \rightarrow jje^+\nu_e\mu^+\nu_\mu$ (LO)
- Parton level events
- MC generator: PHANTOM
- Three samples were generated, with PDF4LHC15_nlo_mc_pdfas, PDF4LHC15_nlo_30_pdfas, and PDF4LHC15_nlo_100 (10M events each)
- Cross-section variation has been achieved by reweighting from the central value of each set to a corresponding error set

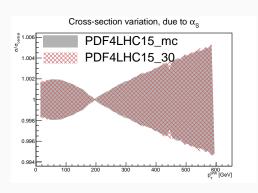
Kinematical cuts:

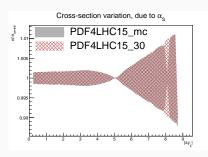

- $\bullet \ p_{\mathrm{T}}^{\ell} > 20 \mathrm{GeV}$
- $\bullet \ |\eta^\ell| < 2.5$
- $p_{\mathsf{T}}^j > 30 \mathsf{GeV}$
- $|\eta^{\ell}| < 4.5$
- $\bullet \ \ p_{\mathrm{T}}^{\mathrm{miss}} > 40 \mathrm{GeV}$
- $m_{jj} > 500 \text{GeV}$
- $\Delta R_{j\ell} > 0.3$
- $\Delta R_{\ell\ell} > 0.3$

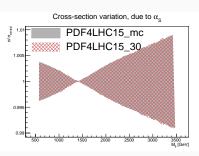
PDF type	Total LO	Statistical	
гог туре	xsection [fb]	error [%]	
PDF4LHC15_nlo_100	2.15271	3.17778×10^{-2}	
PDF4LHC15_nlo_30_pdfas	2.15298	3.16176×10^{-2}	
PDF4LHC15_nlo_mc_pdfas	2.15333	3.16156×10^{-2}	


PDF unc	PDF unc	PDF unc		Combined
MC (a) [%]	MC (b) [%]	Hess [%]	$lpha_S$ unc $[\%]$	unc [%]
-	-	1.76815	-	-
-	-	1.6248	1.3131×10^{-2}	1.6249
1.8329	1.92104	-	1.1046×10^{-2}	1.8329

 • Gaussianity test (Shapiro-Wilk): PDF4LHC15_nlo_mc_pdfas: $W=0.9891, \quad p\text{-value}=0.5928$


- 68% CL differential cross-section uncertainty band, due to PDF variation, along $p_{\rm T}^{WW}$
- Cross-sections normalized to the MC set central value
- Central values differ among the PDF sets, but bands are compatible


ullet 68% CL PDF uncertainty bands along $|\Delta y|$ and m_{jj}



- 68% CL differential cross-section uncertainty band, due to α_S variation, along $p_{\rm T}^{WW}$
- Error cross-sections normalized to the central value from the same PDF set

- \bullet 68% CL α_S uncertainty bands along $|\Delta y|$ and m_{jj}
- ullet Cross-section uncertainty due to $lpha_S$ variation much smaller than the uncertainty due to PDF variation

Conclusions

- The use of reweighting significantly reduces computational time
- Statistical combinations are in many cases better choice than the PDF envelope
- Currently available statistical combination in LHAPDF library is PDF4LHC15
- All three delivery options of PDF4LHC15 give compatible results
- ullet $lpha_S$ uncertainty significantly smaller than the PDF uncertainty
- We plan to perform scale variation at NLO QCD (and EWK if possible) and cross-check this procedure at LO