Reinterpretation studies: search for VBS(ZZ) with the CMS experiment

Connor Innes Thorburn

In collaboration with Roberto Covarelli and Riccardo Bellan

June 21, 2018

Introduction

- Search for VBS(ZZ) into 41, 212q and 212 ν final states using p-p collisions at $\sqrt{s} = 13 TeV$.
- CMS detector data (2016) with 35.9 fb⁻¹ integrated luminosity.
- Use of matrix element techniques.
- VBS(ZZ) into 4/ was already addressed in studies employing MVA/BDT. Reference: Phys. Lett. B 774 (2017) 682
- Matrix element techniques have already been used in a ZZ-high mass higgs studies, with the same three final states mentioned above.
- Reinterpretation of the methodology for VBS(ZZ).

Reference Study For Reinterpretation

- "Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at $\sqrt{s} = 13 TeV$ " (arXiv:1804.01939)
- Study of a potential H(125) heavy scalar partner (X): $X \rightarrow ZZ \rightarrow 4f$
- Three possible final states: 41, 212q and 212 ν

Reference Study: Selection

- Mass ranges:
 - 4/ final state \rightarrow smallest background
 - ightarrow cut at 130 GeV
 - 2/2 ν final state \rightarrow large Z+jet background for low masses \rightarrow cut at 300 GeV
 - 2/2q final state \rightarrow large Z+jet background for low masses \rightarrow cut at 550 GeV
- Other main cuts on p_T and η for leptons and jets.

Reference Study: Mass Distributions I

arXiv:1804.01939

Distribution of the four-lepton invariant mass.

Connor Innes Thorburn

Reference Study: Mass Distributions II

arXiv:1804.01939

Distribution of the invariant mass m_{ZZ} in the signal region.

Connor Innes Thorburn

Reference Study: Mass Distributions III

arXiv:1804.01939

Distribution of the transverse mass in the signal region for the $2e2\nu$ channel.

Connor Innes Thorburn

Reference Study: MELA I

- Processes are studied at generator level, using JHUGen and MCFM matrix elements.
- Discriminants, based on matrix element calculations, are defined for categorizing events and separating signal over background.

arXiv:1804.01939

Discriminant sensitive to $X \rightarrow ZZ \rightarrow 4I$ kinematic properties

Reference Study: MELA II

- 2D templates are created for mass and discriminant distributions.
- A profile likelihood analysis is performed using a statistical tool.
- The significance of signal over background and an upper limit on the cross section are computed.

arXiv:1804.01939

Expected and observed upper limits at the 95% CL on the $X \rightarrow ZZ$ cross section as a function of m_X

Reinterpretation for VBS(ZZ)

- First focus on 4l channel (4e, 4µ, 2e2µ)
 → the other two channels will follow.
- Signal:
 - $VBS(ZZ) jj \rightarrow 4I jj$
- Background:
 - $gg \rightarrow ZZ/Z\gamma * \rightarrow 4I$
 - $q\bar{q} \rightarrow ZZ/Z\gamma * \rightarrow 4I$
 - single Z + jets
- Kinematic discriminant redefinition: $K_D = \frac{P_{VBS}}{P_{VBS} + const * P_{BKG}}$
- P_{VBS} and P_{BKG} are aggregated probabilities of several independent variables for a given 4l total mass.
- Significance is computed using the same statistical tool mentioned for the reference study.

Mela vs. BDT

- In a previous study of VBS(ZZ) jj → 41 jj, based on MELA, the ROC curve for both MELA and MVA/BDT was calculated. Reference: "Studies of Gauge Couplings at LHC: the Effective Field Theory Approach", PhD thesis, Gomez-Ambrosio, Raquel.
- MELA and BDT efficiencies result being comparable and both better than classic cut-based methods.

Conclusions

- A new analysis of VBS(ZZ) processes is presented.
- The methodology of a previous ZZ-high mass study is reinterpreted for the new signal search.
- MELA will be employed instead of the more widely used MVA/BDT approach.