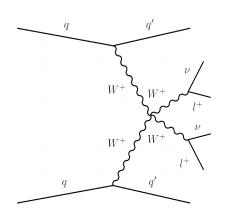
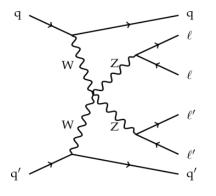


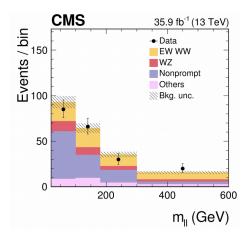
Combination Studies Max Neukum

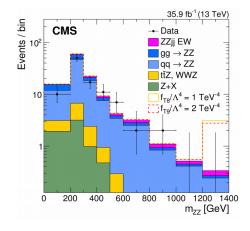
VBSCan 2nd annual meeting **21**st June **2018**

Institute of Experimental Particle Physics, Karlsruhe Institute of Technology




Combination Studies


- 95% CL limits on EFT parameters in quartic vertices
- Combine different channels



ArXiv:1709.05822 [hep-ex]

ArXiv:1708.02812 [hep-ex]

	Observed limits	Expected limits		
	$({ m TeV}^{-4})$	(TeV^{-4})		
$f_{\rm S0}/\Lambda^4$	[-7.7, 7.7]	[-7.0, 7.2]		
$f_{\rm S1}/\Lambda^4$	[-21.6, 21.8]	[-19.9, 20.2]		
f_{M0}/Λ^4	[-6.0, 5.9]	[-5.6, 5.5]		
$f_{\rm M1}/\Lambda^4$	[-8.7, 9.1]	[-7.9, 8.5]		
f_{M6}/Λ^4	[-11.9, 11.8]	[-11.1, 11.0]		
f_{M7}/Λ^4	[-13.3, 12.9]	[-12.4, 11.8]		
f_{T0}/Λ^4	[-0.62, 0.65]	[-0.58, 0.61]		
f_{T1}/Λ^4	[-0.28, 0.31]	[-0.26, 0.29]		
f_{T2}/Λ^4	[-0.89, 1.02]	[-0.80, 0.95]		

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
f_{T0}/Λ^4	-0.53	0.51	-0.46	0.44	2.5
$f_{\rm T1}/\Lambda^4$	-0.72	0.71	-0.61	0.61	2.3
$f_{\rm T2}/\Lambda^4$	-1.4	1.4	-1.2	1.2	2.4
$f_{\rm T8}/\Lambda^4$	-0.99	0.99	-0.84	0.84	2.8
$f_{\rm T9}/\Lambda^4$	-2.1	2.1	-1.8	1.8	2.9

Effective Field Theory

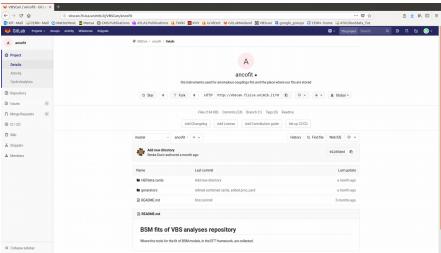
$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{i} \frac{f_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{i} \frac{f_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)} + \dots$$

- Theory invalid beyond UV cut-off Λ, no renormalization
- Include higher (mass-) dimension operators
- For $E < \Lambda$, use first relevant order
- aTGC: dimension-6 aQGC: dimension-8

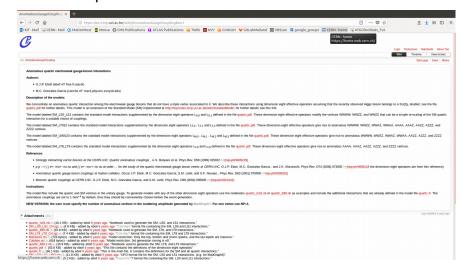
	WWWW	WWZZ	ZZZZ	WWAZ	WWAA	ZZZA	ZZAA	ZAAA	AAAA
$\mathcal{L}_{S,0},\mathcal{L}_{S,1}$	X	X	X	О	О	О	О	O	O
$\mathcal{L}_{M,0},\mathcal{L}_{M,1},\!\mathcal{L}_{M,6},\!\mathcal{L}_{M,7}$	X	X	X	X	X	X	X	O	O
$\mathcal{L}_{M,2}$, $\mathcal{L}_{M,3}$, $\mathcal{L}_{M,4}$, $\mathcal{L}_{M,5}$	О	X	X	X	X	X	X	О	О
$\mathcal{L}_{T,0}$, $\mathcal{L}_{T,1}$, $\mathcal{L}_{T,2}$	X	X	X	X	X	X	X	X	X
$\mathcal{L}_{T,5}$, $\mathcal{L}_{T,6}$, $\mathcal{L}_{T,7}$	О	X	X	X	X	X	X	X	X
$\mathcal{L}_{T,9}$, $\mathcal{L}_{T,9}$	О	O	X	О	O	X	X	X	X

Table 1: Quartic vertices modified by each dimension-8 operator are marked with X.

[O. Éboli et al.]


Signal Model (1)

- MG5 cards on GitLab: process_card
 - run card
- Fact. & Ren. Scales: dynamical_scale_choice=3


$$\sum \frac{m_T}{2}$$

- Systematic Unc. (μ_F, μ_R, pdf):
 MG build-in "systematics"
- aQGC model from feynrules

http://vbscan.fisica.unimib.it/VBSCan/ancofit

http://feynrules.irmp.ucl.ac.be/wiki/AnomalousGaugeCoupling

Signal Model (2)

Start small:

MG sample for: f_{s0} , f_{s1} , f_{s2} look at WW – channel only begin with constraints on f_{s0}

- Easy to reduce 2D to 1D:
 Use "Reweight" to generate
 2D grids
- Quadratically fit 1D, 2D, ...

Observation of electroweak production of same-sign W boson pairs in the two jet and two same-sign lepton final state in proton-proton collisions at 13 TeV

The CMS Collaboration*

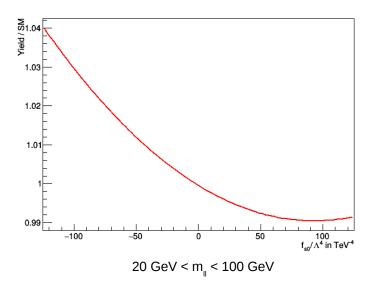
Abstract

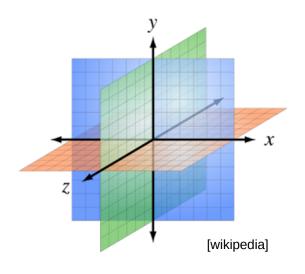
The first observation of electroweak production of same-sign W boson pairs in proton-proton collisions is reported. The data sample corresponds to an integrated luminosity of $35.9\,\mathrm{fb}^{-1}$ collected at a center-of-mass energy of $13\,\mathrm{TeV}$ with the CMS detector at the LHC. Events are selected by requiring exactly two leptons (electrons or muons) of the same charge, moderate missing transverse momentum, and two jets with a large rapidity separation and a large dijet mass. The observed significance of the signal is 5.5 standard deviations, where a significance of 5.7 standard deviations is expected based on the standard model. The ratio of measured event yields to that expected from the standard model at leading-order is 0.90 ± 0.22 . A cross section measurement in a fiducial region is reported. Bounds are given on the structure of quartic vector boson interactions in the framework of dimension-eight effective field theory operators and on the production of doubly charged Higgs boson.

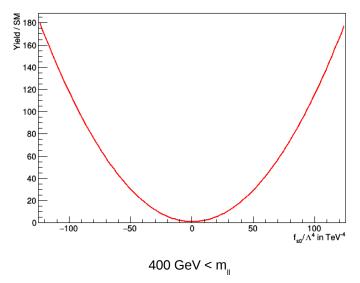
Published in Physical Review Letters as doi:10.1103/PhysRevLett.120.081801.

© 2018 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license

MadGraph: Reweight Grid

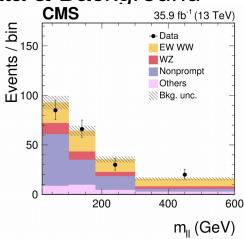

• 3 5x5 grids:

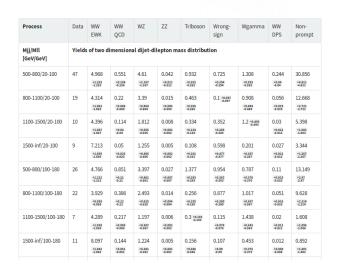

$$25 + (25-5) + (25-5-4) = 61$$
 weights


2D Fit for each bin:

weight on
$$f_{s0} - f_{s1} - plane$$

Results for 1D Fit (f_{s0}):




HEPdata (CMS WW paper)

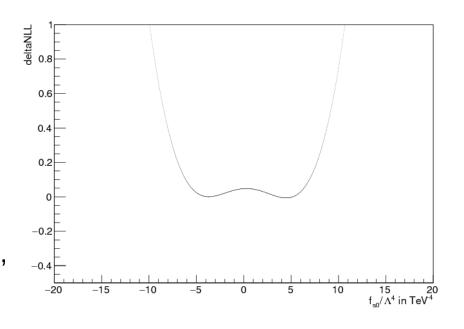
Data & Background

Uncertainties & Efficiency

Source	Value (%)
Integrated luminosity	2.5
Muon selection	2
Electron selection	2
Jet energy scale	3
PDFs	4
QCD scales	10

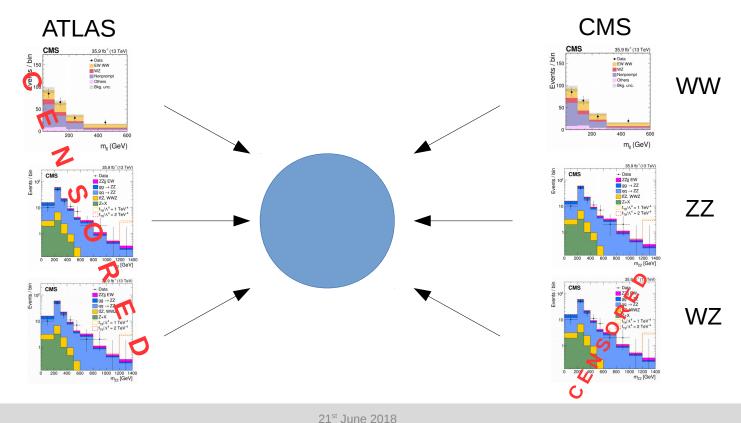
Mll [GeV]	Efficiency (%)
20-100	38
100-200	51
200-300	62
300-400	66
400-inf	66

Statistics Tool (CMS internal)



- https://twiki.cern.ch/twiki/bin/view/CMS/ATGCRooStats
- Based on Higgs combination tool
- Setting limits on aGC parameters
- Fit the produced grids quadratically (1D, 2D, 3D)
- Data & Background from paper
- DeltaNLL & 95% CL limits

Machinery is running


• Missing: cuts on m_{\parallel} , efficiencies, systematic uncertainties, ...

Outlook

- Implement cuts, efficiencies, systematic uncertainties,
- Reproduce bounds given in paper
- Combine different channels: WW, ZZ, WZ (Atlas & CMS)

Backup Slides

