Anomalous coupling extraction using WZ channel in ATLAS

Lilly Wüst

June 21, 2018

▲口▼▲母▼▲日▼▲日▼ 田 ろよの

Lilly Wüst

The WZ production

WZ production in the standard model:

include non SM interactions like the aGC:

 $\rightarrow\,$ provides direct test of SM predictions

indirect searches of aGC:

- $\rightarrow\,$ modified cross sections and kinematic distribution
- $\rightarrow\,$ I'm focusing on the aTGC with the idea of extend this studies to aQGC

Lilly Wüst

Use fully leptonic decay mode ($\ell\ell\ell\nu$)

 \rightarrow clean signal, low background but small branching ratio (1.6%) Dataset 2015-2016: $L = 36.0 \ fb^{-1}$, $\sqrt{s} = 13 \ TeV$

- Signal: SM: DSID: 361553-70; gen: Mc@Nlo+Herwig aTGC: DSID: 361571-88; gen: Mc@Nlo+Herwig
- Background: misid. leptons: data driven
 ZZ: gen: Sherpa 2.2.2
 tt+V: gen: Madgraph/Mc@Nlo+Pythia6/8
 other: gen: Sherpa 2.2.2

The effective lagrangian

The effictive lagrangian \mathcal{L}_{eff} used to describe the effect of non SM processes on aTGCs (used for indirect searches):

 $\frac{\mathcal{L}_{WWZ}}{ig_{WWZ}} = g_1^Z \left(W_{\mu\nu}^{\dagger} W^{\mu} Z^{\nu} - W_{\mu\nu} W^{\dagger\mu} Z^{\nu} \right) + \kappa^Z W_{\mu}^{\dagger} W_{\nu} Z^{\mu\nu} + \frac{\lambda^Z}{m_W^2} W_{\rho\mu}^{\dagger} W_{\nu}^{\mu} Z^{\nu\rho}$

• in the SM:
$$\lambda^Z = 0$$
, $\kappa^Z = g_1^Z = 1$

ightarrow look for deviations λ , $\Delta \kappa$ and Δg from 0

• by implying the aTGC to the SM:

- $\rightarrow\,$ increase diboson production
- $\rightarrow \,$ modify the kinematics distribution

The MC@NLO reweighting

Approximation of the number of signal events N_s^i that are expected including the aTGC:

Lilly Wüst

The fitted distribution

- the most sensitive distribution to aTGC
- used to extract limits using $13.3 fb^{-1}$
- 6 M_T^{WZ} [GeV] bins with partition: [0 - 140], [140 - 180], [180 - 250], [250 - 450], [450 - 600], [600 - ∞]
- the aTGC weights, the background estimation and the systematic uncertainties were calculated in those bins

We have a statistic framework in Dresden

- it's based on RootFit
- currently used by ssWW to extract cross sections
- need to be expanded to do limit settings
 - $\rightarrow\,$ this is what I'm going to do

Limit setting

to set limit, use a likelyhood function defined by rootfit:

$$-\ln L(\alpha, \{x_k\}) = \sum_{i=1}^{6} -\ln\left(\frac{e^{-N_s^i(\alpha, \{x_k\}) + N_b^i(\{x_k\})} \times (N_s^i(\alpha, \{x_k\})) + (N_b^i(\alpha, \{x_k\}))^{N_{obs}^i}}{N_{obs}^i!}\right) \\ + \sum_{k=1}^{n} \frac{x_k^2}{2}$$

- Nⁱ_b expected background events
- Nⁱ_{obs} observed number of events
- N_s^i are functions of the aTGC parameters $\alpha = \lambda^Z$, $\Delta \kappa^Z$ or Δg_1^Z
- $\sum_{k=1}^{n} \frac{x_k^2}{2}$ sum over all Gaussian constrained systematics

→ get different
$$N_s^i$$
 by reweighting the aTGC point $(\lambda^Z = 0.13, \ \Delta \kappa^Z = \Delta g_1^Z = 0)$ for limit setting

Lilly Wüst

Summary and next steps

what is done:

- simulation is working fine
- weights are extracted and tested

what I'm doing:

preparing workspace for fitting

what I have to do:

- extract 1D, 2D and try as well 3D limits and compare with published results
- take aQGC simulation from Stefanie Todt and ssWW published data for aQGC limit extraction

Thank you for your attention!

Lilly Wüst

Appendix

total information of the background: ZZ: DSID: 361603-04; gen :Powheg+Pythia8 DSID: 361073; gen: Sherpa tt+V: DSID: 410218-20,410155; gen: Mc@Nlo+Pythia8 DSID: 410049; gen: Madgraph+Pythia6 others: DSID: 364500-14; gen: Sherpa 2.2.2 DSID: 361620-27; gen: Sherpa

э

< □ > < 同 > < 回 > < 回 > < 回 >