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Dear Dr. Henning Kirschenmann, 

I would like to offer you the position of a post-doctoral researcher in our CMS Experiment project at the 
Helsinki Institute of Physics, starting January 1st, 2017, and extending until the end of the current project on 
31st December, 2018. The contract is extendible by 3 years (up to December 2021) by mutual agreement, 
assuming the approval of the CMS Experiment project into the next 3-year period. 

Helsinki Institute of Physics coordinates the Finnish participation in the CERN experiments and is an inde-
pendent research institute within University of Helsinki, which is among the top 100 universities world-wide 
[1]. Finland participates in the CMS experiment and has leading roles in the tracker upgrade, tracker align-
ment, jet calibration and CMS OpenData. Our physics analyses cover topics varying from Charged Higgs 
searches and neutral Higgs searches to top quark mass measurements, b physics and jet physics. 

Our CMS Experiment group is composed of two professors (prof. Paula Eerola, director of HIP; asst. prof. 
Mikko Voutilainen), three senior scientists (Kati Lassila-Perini, Sami Lehti, Tapio Lampen) and six PhD stu-
dents (T. Järvinen, J. Pekkanen, J. Heikkilä, S. Laurila, J. Havukainen, H. Siikonen). We also enlist several 
emerita and adjoint scientists (J. Tuominiemi, T. Linden, L. Wendland, M. Kortelainen). 

Your responsibilities would include physics analysis, experimental physics responsibilities and leadership 
within CMS experiment (we especially encourage shift captain work, JEC EPR and development of your 
leadership within JetMET), supervision and advising of graduate students (in particular on SUSY Higgs 
searches and top quark mass), organization of national and international workshops and conferences, and 
actively applying for available funding (e.g. foundations post-doc pool, Academy of Finland post-docs, uni-
versity post-docs, as well as travel funding from various foundations). The position includes some outreach 
activities and 5% of teaching. 

We offer: 

• Nationally competitive salary (salary level 5/5, i.e. about 3500 €/month), which includes healthcare, social 
security and pension 

• Up to 4-month transition period at CERN before moving to Finland (remuneration 1500 €/month) 

• Travel budget of 5000 €/anno within the project budget constraints 

• Removal expenses of up to 2000 € 

We would like to hear back from you by November 29th, 2016, in order to be able to arrange the necessary 
paper work for next year in time for a January 1st—31st , 2017 start, given your positive reply. 

Best regards, 

Asst. prof. Mikko Voutilainen, 
Project leader of the CMS Experiment project at HIP 
University of Helsinki and Helsinki Institute of Physics 
In Helsinki on November 9th, 2016

[1] #91 (#96, #67) according to QS World University Ranking in 2016 (2015,2014). 
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- track selection
- regression
- b-tagging
- q/g tagging

- W/Z tagging
(- Top tagging)
- Mass-decorrelated tagging
- Mass calibration

Disclaimer: Will report 
on what “is already 
there” in the 
experiments/around 
the corner, more in 
the pipeline…

For more details, e.g. 
Machine Learning for Jet Physics (12/2017) 
2nd IML Machine Learning Workshop (04/2018) 
First EWSB Spring School (04/2018) 

https://indico.physics.lbl.gov/indico/event/546/overview
https://indico.cern.ch/event/668017/
https://indico.cern.ch/event/673580/


The new players
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• Machine learning already used for a long time in HEP
• BDTs/shallow NNs
• TMVA/ROOT most widely used for a long time

Industry/ML community moved on
• Many open source/industry tools with huge community/big money behind 

them
• DNNs being adopted more and more by HEP community - can handle 

lower level inputs

http://neuralnetworksanddeeplearning.com/chap5.html

http://neuralnetworksanddeeplearning.com/chap5.html

http://tmva.sourceforge.net/docu/TMVAUsersGuide.pdf
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How to define 
flavour of [fat] jet for ATLAS/
CMS multi-classification 
approaches?

How to optimise low level 
reconstruction [in CMS]?

How to use particle flow event 
interpretation most efficiently?

What about 
DeepPFCandidates?



Particle Flow (PF) approach
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Position, momentum 
of charged particles : 
e±, π±, μ±

Silicon Tracker Electromagnetic 
Calorimeter

Position & ID, energy 
of e±,γ, π0

Hadron Calorimeter

Energy of hadrons : 
p, n, π±, K ..

Position & momentum 
of μ±

Muon Chambers
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Track selection



Tracking core of particle flow
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Track seeding Track building Track fitting 

Ongoing: 
• Track quality estimator
• Replacing 11 different 

BDTs used for each offline 
tracking iteration by a 
single DNN

• Performance promising
• Higher efficiency/lower 

fake rate

Hit clustering 

Connecting the dots, Joona Havukainen 

https://indico.cern.ch/event/658267/contributions/2813693/


Tracking at HL-LHC (and Kaggle Challenge)

8
  

04/09/18
TrackML Challenge, iML, J.-R. Vlimant

7

Cost of Tracking
● Charged particle track reconstruction is one of the most CPU

consuming task in event reconstruction
● Future computing budget flat at best
● Optimizations (to fit in computational budgets) mostly saturated

and long way to go for HL-LHC
● Need factor 10-100 speed-up

https://www.kaggle.com/c/trackml-particle-identification 

Looking ahead: 
• Tracking remains huge 

combinatorial challenge
• No fundamental change in 

approach so far 
• Survived with [code] 

optimisations, but 
[probably] not feasible for 
HL-LHC and beyond

• Kaggle challenge to collect  
new ideas

• Not as “simple” in 
terms of ML as 2014 
Higgs classification 
challenge

https://indico.cern.ch/event/658267/contributions/2813693/
https://www.kaggle.com/c/trackml-particle-identification
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Regression



Jet energy corrections (state-of-the-art)
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Ɣ/Z+jet,MJB (pT)

Factorized approach to JEC: 
• Pileup corrections to correct for offset energy (noPU vs. PU jet matching) 
• Correction to particle level jet vs. 𝑝𝑇 and η from simulation 
• Only for data: Small residual corrections (Pileup/relative and absolute) to 

correct for differences between data and simulation

JEC corrects 
reconstructed jets - on 
average - back to particle 
level 
<pT,reco>/<pT,gen> = 1 
(vs. pTgen , η, A, pileup μ)



Jet energy regression
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JEC so far only parametrised as a function of pT, η, A, ρ in CMS for ~all 
analyses
B-jet energy regression used in some places (e.g. H→bbar), analysis-
specific (mostly correcting for neutrino from semileptonic decays

• Correcting for dependence on single observables: Marginal gain 
for PF jets (useful for calo jets, cf. ATLAS global sequential 
calibration)

• DNNs on low level (PF candidates/jet images) might give 
performance boost

• Extra challenge: Would like to have it universally applicable



Jet energy regression
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• One example: Jet Response Prediction Using Jet Images (Machine 
Learning for Jet Physics Workshop) 

2D Convolutional Filter  

Activation Function - 
Tanh  

2D Convolutional Filter  

Activation Function - 
Tanh  

…

• Creating Multiple convolutional filters 


• The larger the filter the more physics it 
captures - reduces effect of sparsity 

• Activation function 
dependent on the 
required output 

…

Multiple 
times for 

deep 
network 

Setting up a D

7

Details 
• Convolution2D (20, 11,11)

• MaxPooling (2, 2)

• Convolution2D (10, 7,7)

• MaxPooling (3, 3)

• Convolution2D (8, 5,5)

• Convolution2D (6, 5,5)

• MaxPooling (2, 2)

• Convolution2D (4, 5, 5)


• Tanh activation for conv2D

• Flatten

• Merge Jet Eta  


• 20 Dense layers w/ sigmoid

• Dropout 0.08


• Merge Jet pT

• 20 Dense Layers w/ soft plus

• Dropout 0.08


• Output layer - Linear activation 

• Adam optimizer with mean squared 

error loss function

256 Batch size with patience = 20 

8

D
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What is the model 
learning? - II

• Residuals as function of # or 
multiplicity of identified  jet 
constituents (charged, neutral hadron, 
photons)


• Multiplicity dependence captured in 
DCNN - from the jet image! 

Neutral Hadron MultiplicityCharged Multiplicity 

Photon Multiplicity  

anti-kt R = 0.7 PF Jets 

• Network captures dependence of 
response on observables sensitive 
to fragmentation

https://indico.physics.lbl.gov/indico/event/546/contributions/1268/
https://indico.physics.lbl.gov/indico/event/546/contributions/1268/
https://indico.physics.lbl.gov/indico/event/546/contributions/1268/
http://opendata.cern.ch/
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Heavy flavor/b-tagging



Heavy flavour tagging (b and c)
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combined:  
Combined Secondary Vertex (CSV) 

super-combined:  
Combined MVA (cMVA)  
charm-Tagger

super
combined

combinedjet

tracks

PV

e/µ

SV

Track selection

Track-based 
tagger

Secondary 
vertex (SV) 

based tagger

Soft-lepton (SL) 
based tagger

10

HF tagging @ CMS — arXiv:1712.07158

M. Verzetti (CERN and FWO)



15 M. Verzetti (CERN and FWO)

5.1 The b jet identification 23

In this figure, the tagging efficiency is integrated over the pT and h distributions of the jets
in the tt sample. The tagging efficiency is also shown for the Run 1 version of the CSV algo-
rithm. It should be noted that the CSV algorithm was trained on simulated multijet events at
centre-of-mass energy of 7 TeV using anti-kT jets clustered with a distance parameter R = 0.5.
Therefore, the comparison is not completely fair. The performance improvement expected from
a retraining is typically of the order of 1%. The absolute improvement in the b jet identification
efficiency for the CSVv2 (AVR) algorithm with respect to the CSV algorithm is of the order of
2–4% when the comparison is made at the same misidentification probability value for light-
flavour jets. An additional improvement of the order of 1–2% is seen when using IVF vertices
instead of AVR vertices in the CSVv2 algorithm. The cMVAv2 tagger performs around 3–4%
better than the CSVv2 algorithm for the same misidentification probability for light-flavour
jets. The DeepCSV P(b) + P(bb) tagger outperforms all the other b jet identification algo-
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Figure 16: Misidentification probability for c and light-flavour jets versus b jet identification
efficiency for various b tagging algorithms applied to jets in tt events.

rithms, when discriminating against c jets or light-flavour jets, except for b jet identification
efficiencies above 70% where the cMVAv2 tagger performs better when discriminating against
light-flavour jets. The absolute b identification efficiency improves by about 4% with respect to
the CSVv2 algorithm for a misidentification probability for light-flavour jets of 1%. Three stan-
dard working points are defined for each b tagging algorithm using jets with pT > 30 GeV in
simulated multijet events with 80 < p̂T < 120 GeV. The average jet pT in this sample of events
is about 75 GeV. These working points, “loose” (L), “medium” (M), and “tight” (T), correspond
to thresholds on the discriminator after which the misidentification probability is around 10%,
1%, and 0.1%, respectively, for light-flavour jets. The efficiency for correctly identifying b jets in
simulated tt events for each of the three working points of the various taggers is summarized
in Table 2.

The tagging efficiency depends on the jet pT, h, and the number of pileup interactions in the
event. This dependency is illustrated for the DeepCSV P(b) + P(bb) tagger in Fig. 17 using

9.1 Comparison of data with simulation 79
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Figure 53: Comparison of the data-to-simulation scale factors derived with various methods
and their combination, for b (left) and c (right) jets. The scale factors measured with the differ-
ent methods agree within their uncertainties. For the left panels, the combination includes all
measurements with the exception of the IterativeFit and the TagCount methods.

HF tagging @ CMS — arXiv:1712.07158Heavy flavour tagging (b and c)
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Towards end of 2016: 
• New tagger coming into the game
• DeepCSV - using ~same information as CSVv2, but performing 

significantly better; SFs fine



DeepCSV
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• Current standard b-tagging 
algorithm in CMS

• Also used at High Level 
Trigger

• Significant gain without using 
[much] more input than 
previous taggers

17

Heavy flavor jets with DNN — DeepCSV

ROC for c vs b

4

Performance of the c jet identification efficiency algorithms demonstrating the 
probability for b jets to be misidentified as c jet as a function of the efficiency to correctly 
identify c jets. The curves are obtained on simulated ttbar events using jets within 
tracker acceptance with pT>30 GeV , b jets from gluon splitting to a pair of b quarks are 
considered as b jets. The lines shown are for CSVv2, DeepCSV CvsB, c-tagger CvsB
and cMVAv2. cMVAv2 and the c-tagger use also the information from the soft leptons 
inside jets, while CSVv2, DeepCSV do not.

ROC c vs. light

5

Performance of the c jet identification efficiency algorithms demonstrating the probability for 
light jets to be misidentified as c jet as a function of the efficiency to correctly identify c jets. 
The curves are obtained on simulated ttbar events using jets within tracker acceptance with 
pT>30 GeV , b jets from gluon splitting to a pair of b quarks are considered as b jets. The 
lines shown are for CSVv2, DeepCSV CvsL, c-tagger CvsL and cMVAv2. cMVAv2 and the c-
tagger use also the information from the soft leptons inside jets, while CSVv2, DeepCSV do 
not. The irregularity observed in the ROC curve of the c-tagger is caused by a sharp feature 
in the discriminator distribution due to jets without any selected tracks.

Dense
100 nodes x 5 layers

Charged (8 features) x6

Secondary Vtx (8 features) x1

Global variables (12 features)

Output classes:
b, bb, c, l

M. Verzetti (CERN and FWO)

arXiv:1712.07158

Jan Kieseler

DeepCSV with the new Pixel Detector

8

• Clear benefit from the new pixel detector for all taggers 

DeepCSV 
•Almost 80%* b vs. light flavour discrimination efficiency for 1% misid. prob. 
•Re-training of the DNN increased performance even (slightly) more 
‣ Re-trained on 40M jets from QCD and top-quark pair events 

• First successful step towards DNN-based taggers in CMS
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Beyond DeepCSV: DeepJet
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Particle-based NN architecture

Charged (16 features) x25

Secondary Vtx (17 features) x4

Global variables (6 features)

Dense
200 nodes x1,
100 nodes x6

b 
bb 
c 
l

Neutral (8 features) x25

1x1 conv. 64/32/32/8

1x1 conv. 32/16/4

1x1 conv. 64/32/32/8

RNN 150 

RNN   50 

RNN   50 

M. Verzetti (CERN and FWO)

The recurrent layers 
(LSTM) builds a 
“summary” of the 
information contained in 
each set of feature 
types 

Convolutional layers 
progressively learn a 
more compact feature 
representation (automatic 
feature engineering) 

• Starting directly from PFCandidate level, not using track selection from 
[Deep]CSV



Beyond DeepCSV: DeepJet
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Particle-based NN architecture

Charged (16 features) x25

Secondary Vtx (17 features) x4

Global variables (6 features)

Dense
200 nodes x1,
100 nodes x6

b 
bb 
c 
l

Neutral (8 features) x25

1x1 conv. 64/32/32/8

1x1 conv. 32/16/4

1x1 conv. 64/32/32/8

RNN 150 

RNN   50 

RNN   50 

M. Verzetti (CERN and FWO)
Figure 3: Performance of the b jet identification algorithms demonstrating the probability 
for non-b jets to be misidentified as b jet, as a function of the efficiency to correctly 
identify b jets. The curves are obtained on simulated ttbar events using jets within 
abs(η)<2.4 and with pT>30 GeV. The b jets from gluon splitting to a pair of b quarks are 
considered as b jets. The lines shown are for DeepCSV (retrained for the Phase 1 
detector geometry), NoConv, and DeepFlavour. The NoConv algorithm serves only for 
comparison. The absolute performance in this figure serves as an illustration since the b 
jet identification efficiency depends on the pT and η distribution of the jets in the topology 
as well as the amount of b jets from gluon splitting in the sample.

5

Figure 5: Performance of the DeepCSV (retrained for the Phase 1 detector geometry) 
and DeepFlavour b jet identification algorithms demonstrating the probability for non-
b jets to be misidentified as b jet ,as a function of the efficiency to correctly identify b 
jets. The curves are obtained on simulated QCD multijet events using jets within 
abs(η)<2.4 and with 300 GeV < pT < 600 GeV. The b jets from gluon splitting to a pair 
of b quarks are considered as b jets. The absolute performance in this figure serves 
as an illustration since the b jet identification efficiency depends on the pT and η 
distribution of the jets in the topology as well as the amount of b jets from gluon 
splitting in the sample.

7

• Additional information not utilised without convolutional layers
• Huge gain where track selection was suboptimal



PERFORMANCE (II)
Flavor information helps a lot for 
boosted jet tagging, especially for 
top-tagging 

clear improvement from BDT (w/o 
b-tag) to BDT (Full) 

even larger gain from DNN (Particle 
kinematics) to DNN (Particle full) 

The new DNN algorithm [DNN 
(Particle full)] based on P-CNNs 
shows great power in exploiting the 
full set of information from jet 
constituents and significantly 
improves the performance 

~4x reduction in QCD multijet 
misidentification rate for the same 
top efficiency (@60%)
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Going towards W/Z/H/top tagging

19

• Can use particle-based networks also for 
tagging of fat jets (many substructure 
taggers already on the market)

• [Again] way more inputs than for narrow jet 
b-tagging

• Network architecture inspired by imaging 
(RNNs computationally too expensive)

• ~4 times reduction in QCD multi jet 
misidentification for same efficiency

• Significantly larger amount of candidates used to accomodate for 
90% of the fat jets


• Need to learn substructure from both charged and neutral 
candidates


• RNNs become computationally too expensive to train

• Use particle-level convolutional layers (P-CNN) where each 

feature is treated as a “colour”

DeepJet for boosted resonances

31

Inclusive particles x100  
10 features, pT ordered

Secondary Vtx x5
14 features,  

displacement ordered

Dense
521 nodes x1 Output

Charged particles x60
30 features, sIP ordered

P-CNN layers x14

P-CNN layers x14

P-CNN layers x14

Sub-structure

{Flavour

M. Verzetti (CERN and FWO)
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Quark/gluon tagging



Quark-gluon discrimination
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What is a Quark Jet?

From lunch/dinner discussions

A quark parton


A Born-level quark parton


The initiating quark parton in a final state shower


An eikonal line with baryon number 1/3 
and carrying triplet color charge


A quark operator appearing in a hard matrix element 
in the context of a factorization theorem


A parton-level jet object that has been quark-tagged 
using a soft-safe flavored jet algorithm (automatically 
collinear safe if you sum constituent flavors)


A phase space region (as defined by an unambiguous 
hadronic fiducial cross section measurement) that yields 
an enriched sample of quarks (as interpreted by some 
suitable, though fundamentally ambiguous, criterion)

Ill-Defined

Well-Defined What we mean

What people 
sometimes 

think we mean

Quark 
as adjective

Quark 
as noun

Figure 1. Original slide from the June 10, 2015 summary report of the quark/gluon Les Houches
subgroup [1].

2 What is a quark/gluon jet?

As part of the 2015 Les Houches workshop on “Physics at TeV Colliders” [1], an attempt was

made to define exactly what is meant by a “quark jet” or “gluon jet” (see Fig. 1). Here are

some suggested options for defining a quark jet, in (approximate) order from most ill-defined

to most well-defined. Related statement can be made for gluon jets.

A quark jet is...

• A quark parton. This definition (incorrectly) assumes that there is a one-to-one

map between a jet and its initiating parton. Because it neglects the important role of

additional radiation in determining the structure of a jet, we immediately dismiss this

definition.

• A Born-level quark parton. This definition at least acknowledges the importance of

radiative corrections to jet production, but it leaves open the question of how exactly to

define the underlying Born-level process from an observed final state. (For one answer

valid at the parton level, see flavored jet algorithms below.)

• An initiating quark parton in a final state parton shower. We suspect that this

is the definition most LHC experimentalists have in mind. This definition assumes that

the parton-shower history is meaningful, though, which may not be the case beyond the

– 5 –

In practice, experiments use some parton (quark/gluon) and/or 
hadron (b/c-tagging) flavour definition. Discussion on more consistent 
“truth labelling” ongoing in CMS



Quark-gluon discrimination in CMS
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Quark-Gluon likelihood:
Known from Run1 - 3 input 
observablesDiscriminator performances in simulation 

(a) (b)

ROC curves showing Quark-Gluon Likelihood performances 

4

Quark jet tagging e�ciency as a function of the gluon jet rejection rate:

(a) individual variable discrimination rate compared to the full Likelihood (b)

Likelihood performance in di↵erent kinematic regions.
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Observables and discriminator 

Main differences are:
• the particle multiplicity is higher in gluon jets than in light-

quark jets;

quark

gluon

jets from light-flavor quarks      jets from gluons6=

• gluon jets are less collimated than quark jets. 

• the fragmentation function of gluon jets is considerably 
softer than that of a quark jet;

A discriminator capable of distinguishing between quark- and gluon-like jets is built:

• pdf's of the observables are multiplied to give the total likelihood

• the likelihood is determined for several           bins (from       > 30 GeV  and across the whole η 
detector acceptance)

• training studies performed in simulated QCD dijet training events (PYTHIA 8)

• CMS Collaboration, Performance of quark/gluon discrimination in 8 TeV pp data,                   
CMS-PAS-JME-13-002 

⌘/pT pT

2

6
Quark/Gluon Jets

Figure: Quark jet

I Quark initiated jets are
narrower

CF =
4
3

Figure: Gluon jet

I Gluon initiated jets are
more wide.

CA = 3

B.R.Webber, Quark and Gluon Jets in Quantum Chromodynamics, Physica Scripta, vol 25, no 1B, p 198, 1982
Sreedevi Narayana Varma | MACHINE LEARNING IN JET PHYSICS

6
Quark/Gluon Jets

Figure: Quark jet

I Quark initiated jets are
narrower

CF =
4
3

Figure: Gluon jet

I Gluon initiated jets are
more wide.

CA = 3

B.R.Webber, Quark and Gluon Jets in Quantum Chromodynamics, Physica Scripta, vol 25, no 1B, p 198, 1982
Sreedevi Narayana Varma | MACHINE LEARNING IN JET PHYSICS

PYTHIA: More discrimination
Herwig: Less discrimination
Data: Somewhere in between

CMS DP -2017/027 CMS DP -2016/070 

https://cds.cern.ch/record/2275226
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Quark-Gluon likelihood:
Known from Run1 - 3 input 
observables 
(ptD,multiplicity,σ2)

CMS DP -2017/027 CMS DP -2016/070 
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Quark-gluon discrimination variables in medium pT, derived from Pythia QCD di-jet Monte-Carlo simulation. From 
left top to middle bottom, major axis of the jet ellipse, minor axis, charged particle multiplicity, DR weighted pT sum 
and ptD are shown. The red (blue) histogram represents the jets matched to the gluon (light-flavour quark) at the 
generator level. The matching is taken for the most closest partons to the jet. The right bottom plot shows the output 
BDT score distribution based on these input variables.
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Observables and discriminator in simulation
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BDT - adding two more 
observables 
(σ2, Σlog(pT/∆R) / jet pT)
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Performance of the DeepJet multi classification algorithm, the recurrent and the convolutional 
approach, demonstrating the probability for gluon jets to be misidentified as a light quark (uds) jet, 
as a function of the efficiency to correctly identify light quark jets. The curves are obtained on 
simulated QCD events with p̂T between 80 and 120 GeV and using jets with a pT above 70 GeV. 
The absolute performance in this figure serves as an illustration since the light quark jet 
identification efficiency depends on the pT and η distribution of the jets, the event topology, the 
flavour composition of the sample, and the generator used. All curves are obtained using Pythia8. 
Jets that originate from a gluon splitting to cc or bb quarks are not considered gluon jets.

!15

DeepJet (same as for b-
tagging)

Many papers/ideas on the topic; particularly interesting to train without 
need for “truth labeling” or multi-classification a la DeepJet

https://cds.cern.ch/record/2275226
https://cds.cern.ch/record/2234117/files/DP2016_070.pdf


Conclusions

24

Machine learning for jets (reconstruction) - 
status quo
• Has always been there
• BUT: Still took only first couple of steps towards 

adopting Deep Neural Networks in “production 
mode”

• Particle-based “brute force” low level taggers doing 
very well 

• Regression difficult(?)

Machine learning for jets (reconstruction) - 
future
• Exciting times - many ideas and approaches 

haven’t been explored, yet
• Many new results around the corner (check e.g. 

BOOST2018)
• If you already know the optimal solution there is no 

point in ML 
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