Machine learning for jets (reconstruction)

Amphitheater of Central Library of Aristotle University of Thessaloniki, right in the middle of the campus, Thessaloniki

11:00 - 11:30

- track selection
- regression
- b-tagging
- q/g tagging

Machine learning for jets (substructure)

Steven Schramm

Amphitheater of Central Library of Aristotle University of Thessaloniki, right in the middle of the campus, Thessaloniki

11:30 - 12:00

- W/Z tagging
- (- Top tagging)
- Mass-decorrelated tagging
- Mass calibration

Disclaimer: Will report on what "is already there" in the experiments/around the corner, more in the pipeline...

For more details, e.g.

Machine Learning for Jet Physics (12/2017)

2nd IML Machine Learning Workshop (04/2018)

First EWSB Spring School (04/2018)

The new players

- Machine learning already used for a long time in HEP
- BDTs/shallow NNs
- TMVA/ROOT most widely used for a long time

Industry/ML community moved on

- Many open source/industry tools with huge community/big money behind them
- DNNs being adopted more and more by HEP community can handle lower level inputs

How to define flavour of [fat] jet for ATLAS/ CMS multi-classification approaches?

How to optimise low level reconstruction [in CMS]?

How to use particle flow event interpretation most efficiently?

What about DeepPFCandidates?

Particle Flow (PF) approach

Track selection

Tracking core of particle flow

Ongoing:

- Track quality estimator
- Replacing 11 different BDTs used for each offline tracking iteration by a single DNN
- Performance promising
 - Higher efficiency/lower fake rate

Connecting the dots, Joona Havukainen

Tracking at HL-LHC (and Kaggle Challenge)

Looking ahead:

- Tracking remains huge combinatorial challenge
- No fundamental change in approach so far
- Survived with [code]
 optimisations, but
 [probably] not feasible for
 HL-LHC and beyond
- Kaggle challenge to collect new ideas
 - Not as "simple" in terms of ML as 2014 Higgs classification challenge

Regression

Jet energy corrections (state-of-the-art)

Particle Flow Jet

Factorized approach to JEC:

- Pileup corrections to correct for offset energy (noPU vs. PU jet matching)
- Correction to particle level jet vs. p_T and η from simulation
- Only for data: Small residual corrections (Pileup/relative and absolute) to correct for differences between data and simulation

Jet energy regression

JEC so far only parametrised as a function of p_T , η , A, ρ in CMS for ~all analyses

B-jet energy regression used in some places (e.g. H→bbar), analysisspecific (mostly correcting for neutrino from semileptonic decays

- Correcting for dependence on single observables: Marginal gain for PF jets (useful for calo jets, cf. ATLAS global sequential calibration)
- DNNs on low level (PF candidates/jet images) might give performance boost
- Extra challenge: Would like to have it universally applicable

Jet energy regression

One example: <u>Jet Response Prediction Using Jet Images (Machine Learning for Jet Physics Workshop)</u>

Setting up a DCN

- Creating Multiple convolutional filters
- The larger the filter the more physics it captures - reduces effect of sparsity

 Network captures dependence of response on observables sensitive to fragmentation Heavy flavor/b-tagging

Heavy flavour tagging (b and c)

Towards end of 2016:

- New tagger coming into the game
- DeepCSV using ~same information as CSVv2, but performing significantly better; SFs fine

DeepCSV

- Current standard b-tagging algorithm in CMS
- Also used at High Level Trigger
- Significant gain without using [much] more input than previous taggers

 Starting directly from PFCandidate level, not using track selection from [Deep]CSV

Beyond DeepCSV: DeepJet Charged (16 features) x25 1 1x1 conv. 64/32/32/8 **RNN 150** b 1x1 conv. 32/16/4 RNN 50 **Dense Neutral (8 features) x25** bb 200 nodes x1, Secondary Vtx (17 features) x4 1x1 conv. 64/32/32/8 RNN 50 100 nodes x6 Global variables (6 features) √s=13 TeV. Phase 1 √s=13 TeV, Phase 1 misid. probability nisid. probability CMS Simulation Preliminary CMS Simulation Preliminary QCD events tī events AK4jets (300 GeV < p_ < 600 GeV) AK4jets ($p_{\tau} > 30 \text{ GeV}$) DeepCSV DeepCSV noConv DeepFlavour DeepFlavour 10^{-2} 10^{-2} -udsa udsg 10^{-3} 10^{-3}

b-jet efficiency

Additional information not utilised without convolutional layers

b-jet efficiency

Huge gain where track selection was suboptimal

Going towards W/Z/H/top tagging

- Can use particle-based networks also for tagging of fat jets (many substructure taggers already on the market)
- [Again] way more inputs than for narrow jet b-tagging
- Network architecture inspired by imaging (RNNs computationally too expensive)
- ~4 times reduction in QCD multi jet misidentification for same efficiency

Quark/gluon tagging

What is a Quark Jet?

From lunch/dinner discussions

Speaker: Andrzej Konrad Siodmok (Polish Academy of Sciences (PL))

In practice, experiments use some parton (quark/gluon) and/or hadron (b/c-tagging) flavour definition. Discussion on more consistent 21"truth labelling" ongoing in CMS

Quark-gluon discrimination in CMS

PYTHIA: More discrimination Herwig: Less discrimination Data: Somewhere in between Quark-Gluon likelihood: Known from Run1 - 3 input observables

Quark-gluon discrimination in CMS

Quark-Gluon likelihood: Known from Run1 - 3 input observables (ptD,multiplicity,σ₂)

BDT - adding two more observables $(\sigma_2, \Sigma \log(pT/\Delta R) / jet pT)$

DeepJet (same as for b-tagging)

Many papers/ideas on the topic; particularly interesting to train without need for "truth labeling" or multi-classification a la DeepJet

Conclusions

Machine learning for jets (reconstruction) - status quo

- Has always been there
- BUT: Still took only first couple of steps towards adopting Deep Neural Networks in "production mode"
- Particle-based "brute force" low level taggers doing very well
- Regression difficult(?)

Machine learning for jets (reconstruction) - future

- Exciting times many ideas and approaches haven't been explored, yet
- Many new results around the corner (check e.g. BOOST2018)
- If you already know the optimal solution there is no point in ML

Backup

