

ATLAS: First Data

Stephen Haywood (RAL) on behalf of the ATLAS Collaboration

ATLAS: First Data

This Talk

- The ATLAS Detector
- Preparing for Collisions: Cosmics, Splash Events
- Collision Data
- Sub-detector Performance
- Combined Performance
- Outlook
- Conclusions

The ATLAS Detector

Inner Detector (ID)

Inserting ID End-cap into ATLAS

- B = 2T
- Expect $\sigma(1/p_T) = 0.34 \text{ TeV}^{-1} \times (1 \oplus 44 \text{ GeV}/p_T)$ $\sigma(d_0) = 10 \ \mu\text{m} \times (1 \oplus 14 \text{ GeV}/p_T)$

Calorimetery

Barrel LAr EM Calorimeter

- EM Calo: LAr/Pb $\sigma(E)/E \sim 10\%/\sqrt{E \oplus 0.7\%}$
- Hadronic Calo: Scin/Fe and LAr/Cu $\sigma(E)/E \sim 50\%/\sqrt{E \oplus 3\%}$
- Forward Calo up to $|\eta| < 4.9$

Muon Spectrometer

- B = 0.5 4 T
- Expect $\sigma(p_T)/p_T = 4\%$ at high p_T

Very Forward Detectors

ALFA: Absolute Luminosity for ATLAS Installation in 2010

ATLAS: First Data

420 m (AFP): ongoing ATLAS review

Trigger

Min-Bias Trigger Scintillators (MBTS)

- 16 counters (2 rings) on each end
- $2.1 < |\eta| < 3.8$

Preparing for Collisions

- 1992 ATLAS Lol
- 1997 Construction starts
- 2003 Installation at Point 1 starts
- 2008 Installation completed; Cosmic data-taking starts
- 11 Sep 2008 First Beams circulated in LHC20 Sep 2008 LHC magnet failures
- 20 Nov 2009 Single Beam Splash in ATLAS 23 Nov 2009 First collisions at $\sqrt{s} = 900$ GeV 8 Dec 2009 First collisions at $\sqrt{s} = 2.36$ TeV

Cosmics

Praying for Events

Beam Splash

Large numbers of channels fired simultaneously great for timing-in detectors

> Hits in each event: •300,000 SCT •350,000 TRT •490,000 MDT •320,000 RPC •65,000 TGC •3,000 TeV in Calo

4 Feb 2010

ATLAS: First Data

Beam-Halo & Beam-Gas

Collision Data

First collisions at $\sqrt{s} = 900 \text{ GeV}$ 23 Nov 2009

ATLAS records ~200 events; first at 14.22.

6 Dec 2009 Machine protection system commissioned

Stable beams; Inner Detector at nominal voltage

8 Dec 2009

4 Feb 2010

ID HV at standby

Minimum Bias Events

Triggering

Trigger Rates Dominated by Beam Pickup & MBTS

Beam injection

- Record collisions
- ID HV off
- HLT not engaged

Beams stable

- ID HV on
- HLT engaged
- L1 unconstrained

Sub-detector Performance

	Sub-detector	# Channels	Op Fraction (%)
Inner Detector	Pixels	80M	97.9
	SCT – Si strips	6.3M	99.3
	TRT – TR Tracker	350k	98.2
Calorimetry	EM LAr Calo	170k	98.8
	Hadronic Tile Calo	9.8k	99.2
	Hadronic LAr End-cap Calo	5.6k	99.9
	LAr Forward Calo	3.5k	100
Muon Spectrometer	MDT – central Muon det	350k	99.7
	CSC – forward Muon det	31k	98.4
Trigger	RPC – Barrel Muon Trig	370k	98.5
	TGC – End-cap Muon Trig	320k	99.4
	Level-1 Calo Trig	7.2k	99.9

4 Feb 2010

Transverse Width of Beam-spot $\sigma = 234 \,\mu\text{m}$

Beam–spot in x-y

Entries 1600 RUN 142165 Gaussian Fit Mean = -0.217 +/- 0.002 mm **Reconstructed vertices** with more than 2 tracks Sigma = 0.234 +/- 0.002 mm 1200 1000 800 ATLAS Preliminary 600 400 200 0 0 -3 -2 -1 1 2 3 4 X vertex position, mm Beam Spot Position x (mm) 0.1E Run 141749 Fit to full run 8212 events 0.05 Unbinned ML fit blocks (2 * 116s) 0 ≥ 4 tracks/vertex -0.05 -0. -0.15 -0.2 -0.25 ATLAS Preliminary

50

40

60

Stability of Beam-spot vs Time Lumi Block ≈ 2 mins

Luminosity Block Number

80

70

90 100

-0.3

10

20

30

- Alignment deduced from Cosmics is not bad
- Cosmics illuminated "vertical" modules
- Also "global" distortions ?
- Improvements are needed

SCT Cluster Width (in strips) vs Incident Angle Measures Lorentz Angle

dE/dx in Pixels vs Qp

Transition Radiation in TRT vs Lorentz Boost

Armenteros Plot: $p_T vs (p_L^+ - p_L^-)/(p_L^+ + p_L^-)$

Conversions

Calorimetry

Muon Spectrometer

|η| of Muon Tracks Peaked at high values for Min-Bias (At low p_T, only forward tracks have enough p to traverse calorimeters)

Grid Computing

- 0.2 Pbytes of data stored since 20 Nov 2009
- 8 hours between collisions in ATLAS and data arriving at Tier-2
- Reprocessing (align, calib) done at Tier-1s over Xmas

Combined Performance

Good agreement in the (challenging) low-E region indicates good description of material and shower physics in G4 simulation (thanks also to years of test-beam)

Photon Candidates

Electron Candidates

Jets

Missing Energy

Topological Calo Clusters provide an estimate of E_T(miss) which is more robust against noise compared to using all Calo

Clusters

E_T "Topological" Calo Clusters in Minimum Bias Events

E_T(miss) calculated from Calo Clusters and "Topological" Calo Clusters in Random Trigger (empty) Events Simple model for noise – reasonable, but not yet perfect

"Topological" Clusters are formed by clustering Calo cells with E>0 in 3D so as to reduce effects of noise

x & y components of E_T (miss)

Use "Topological" Clusters

Resolution of x & y components of E_{T} (miss)

Outlook

Need to

- Improve Alignment of Inner Detector goal O(10) μm Use Hardware (FSI),Tracks, Resonances Likewise for Muon Spectrometer
- Confirm X₀ goal O(1)%
 Use Conversions, Brem, K⁰ decays, J/ψ
- Commission vertexing for B-decays, b-tagging, τ 's
- Check Energy-scales in Calorimeters Use J/ ψ & Z \rightarrow ee, E/p, j γ events
- Calibrate **b-tagging** and commission more sophisticated algo's
- Etc etc etc etc

Problems

We need a bigger control room !

The Inner Detector Project Leader needs a chair !

- <u>No</u> disasters, <u>no</u> big problems
- Recall operating fractions between <u>98</u> and <u>100%</u>
- Replace Inner Detector Evaporative Cooling Plant with more robust system
- Some Heater Pads in ID have died
- A few inoperative Cooling Circuits in SCT & Pixels
- LAr Calo Optical Transmitters (1%) have died; back-up being developed
- Follow evolution of: ID Optical Transmitters, Calo LV Power Supplies, Muon Spectrometer Power Supplies, RPC Gas Inlets
- Rate limitations in CSC Muon Trigger Chambers

Early Physics

This year, hoping for 200-500 pb⁻¹ at $\sqrt{s} = 7-10$ TeV

Channel (electrons)	Primary Trigger (L1Calo)	Events per pb ⁻¹ (7 TeV)
$b/c \rightarrow eX$	e10	100,000
$J/\psi \to ee$	2e5	1,500
$W \to e \nu$	e20	2,000
$Z \rightarrow ee$	e20	200

- Minimum Bias: $d^2N/d\eta dp_T$ not easy !
- **B-Physics:** Onia x-sections
- QCD: $d\sigma_{jet}/dp_T$
- W/Z: x-sections
- Start searches for Higgs, SUSY, X \rightarrow ee, $\mu\mu$, $\gamma\gamma$

Conclusions

- ATLAS was very excited with the rapid start-up of the LHC in Nov & Dec 2009 more successful than we dared to hope for
- ATLAS was ready on Day-1 and again has performed better than we dared hope
- Our Software is working well, as is the whole Computing Infrastructure (Grid)
- Initial results look very good: excellent agreement with expectations – the result of much effort in Test-beams and tuning MC's
- There is lots to do
- ATLAS is eagerly awaiting lots of data, at the highest energies

Thanks to ...

- **CERN Accelerator Team** for making it possible
- Our Engineers & Technicians for constructing & operating a beautiful detector

Back-up

ID Material

Expected ID Resolutions

Expected ID Resolutions

Parameter	0.25 < η < 0.50		1.50 < η < 1.75	
	σ(p _T =∞)	Π (GeV)	σ(p _T =∞)	Π (GeV)
Q/p _T	0.34 TeV ⁻¹	44	0.41 TeV ⁻¹	80
φ	70 µrad	39	92 µrad	49
cot θ	$0.7 imes 10^{-3}$	5	$1.2 imes 10^{-3}$	10
d ₀	10 µm	14	12 µm	20
$z_0 \times \sin \theta$	91 µm	2	71 µm	4

Minimum Bias in ID

J/ψ in ID

Pion "Efficiency" in TRT

Cosmics in ID

Trigger Rates

Beams stable; ID HV on; HLT engaged; L1 no longer dominated by HLT dead-time

MBTS and L2 Track Trigger have similar rates – both selecting "central" events

ATLAS: First Data

Armenteros Plot

 $p_L^+ = \gamma(+p * \cos \theta * + \beta E *^+)$ $p_L^- = \gamma(-p * \cos \theta * + \beta E *^-)$ $p_T^- = p * \sin \theta *$

$$R = \frac{p_L^+ - p_L^-}{p_L^+ + p_L^-} = \frac{\beta(E^{*+} - E^{*+}) + 2p^* \cos\theta^*}{\beta(E^{*+} + E^{*+})} = \frac{(E^{*+} - E^{*+})}{M} + \frac{2p^*}{\beta M} \cos\theta^*$$
$$= f(M, m^+, m^-) + \frac{2}{\beta}g(M, m^+, m^-) \cos\theta^*$$

$$p_T = Mg(M, m^+, m^-)\sin\theta *$$

$$\left(\frac{R - f(M, m^+, m^-)}{\frac{2}{\beta}g(M, m^+, m^-)}\right)^2 + \left(\frac{p_T}{Mg(M, m^+, m^-)}\right)^2 = 1$$

An ellipse, provided $\beta \approx 1$

Muon Alignment

Target: 30 µm

Muon Spectrometer

ATLAS: First Data

Muon Spectrometer Resolution

B-tagging

Impact Parameter Resolution

Impact Parameter

When	What	Light-jet Rejection	B-jet Efficiency
Early Data	IP & Secondary Vertices	~100	50%
Later	High-perf Algos	~300	60%

4