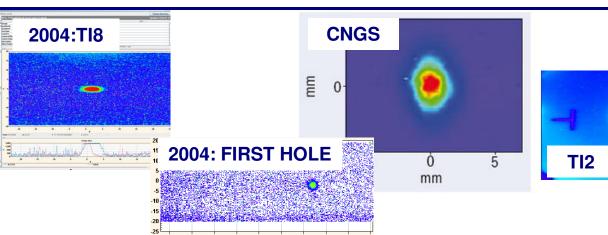
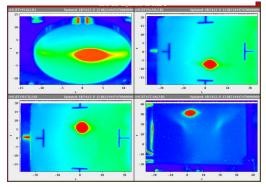
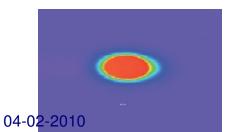
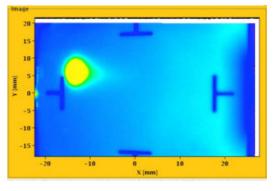


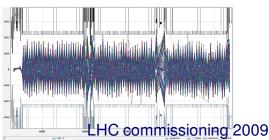
LHC Commissioning 2009




Prep: beam tests through the years

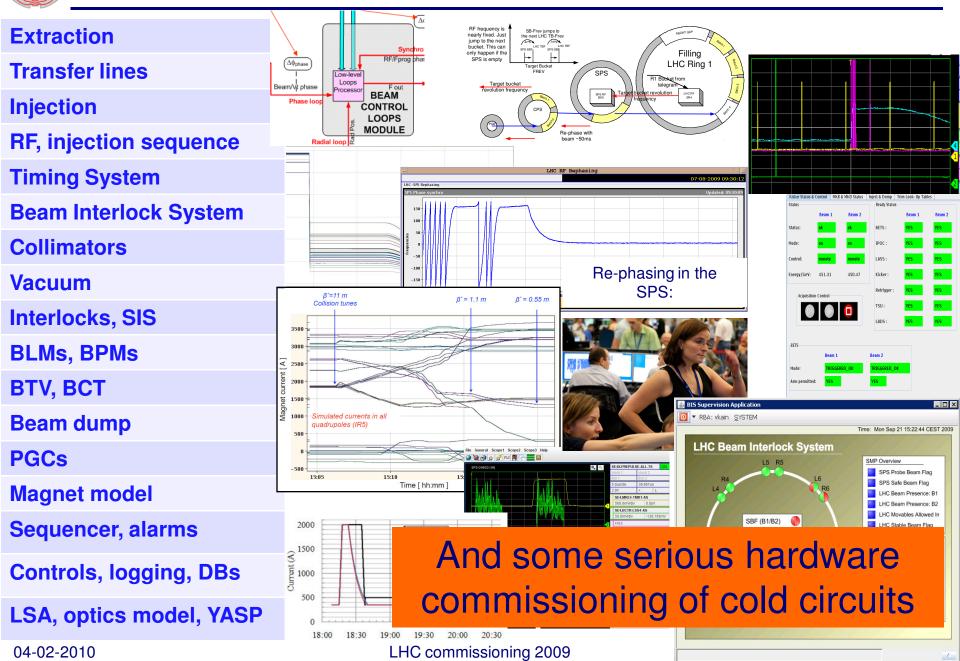



2008: FIRST BEAM TO LHC


2009: FIRST IONS TO LHC

2008: FIRST BEAM TO IR3

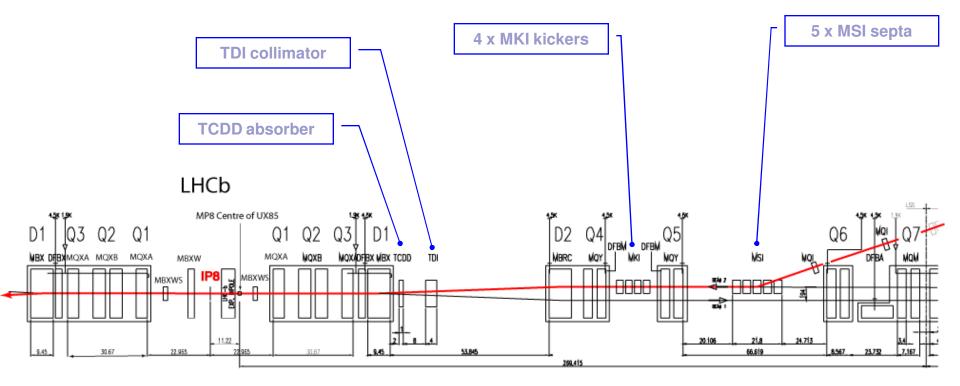
2009: Sector test



2008: SEPT 10

Prep: dry runs and machine checkout

20 th Nov	injection of both beam – rough RF capture				
21 st Nov	Beam 1 circulating				
22 nd Nov	Beam 2 circulating				
23 rd Nov	First pilot collisions at 450 GeV First trial ramp				
26 th Nov	Pre-cycle established – excellent reproducibility Energy matching				
29 th Nov	Ramp to 1.08 TeV and then 1.18 TeV				
30 th Nov	Solenoids on				
1 st – 6 th Dec	Protection qualified at 450 GeV to allow "stable beams"				
6 th Dec	Stable beam @ 450 GeV				
8 th Dec	Ramp 2 beams to 1.18 TeV – first collisions				
11 th Dec	Stable beam collisions at 450 GeV with high bunch intensities: 4 x 2 10^10 per beam				



14 th Dec	Ramp 2 on 2 to 1.18 TeV - quiet beams - collisions in all four experiments
14 th Dec	16 on 16 at 450 GeV - stable beams
16 th Dec	Ramped 4 on 4 to 1.18 TeV - squeezed to 7 m in IR5 - collisions in all four experiments
16 th Dec	End of run

- 3 days first collisions at 450 GeV
- 9 days first ramp to 1.2 TeV
- 16 days stable beams at 450 GeV
- 18 days two beams to 1.2 GeV, first collisions

Layout (point 8)

Nominal batch from the SPS: 288 bunches of 1.15 e11 protons at 450 GeV

We did a single bunch of 2 e10

Delicate process

- □ We will sling around a lot of beam during this process
- □ Complex dance of hardware, timing, RF, interlocks etc.
- Have to carefully position collimators and other protection devices to make sure we catch any losses
- Full program of beam based checks performed
 injection protection (TDI etc), transfer line collimators, TDI positioning, aperture, kicker waveform etc.

WORK TO DO

- Issues with BLMs triggering the beam interlock system due to fast losses during the injection process
 - □ Even at these low intensities (one bunch 2 e10)
 - BLMs set for circulating beam not injected problem being addressed
- Generally impressive, clearly benefits from experience gained during injection tests.
- However, for the moment one would worry about routinely injecting unsafe beam.

Or what you can do with 2.9 MJ

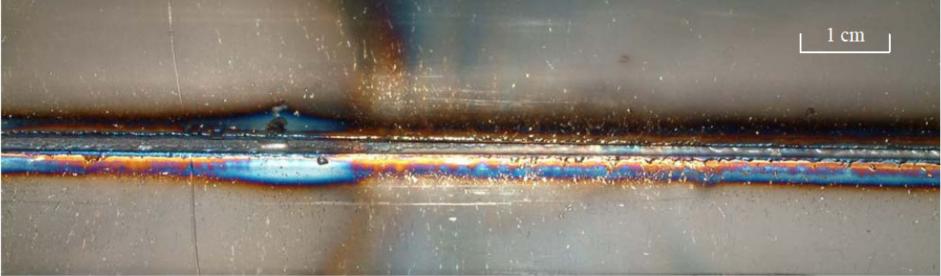
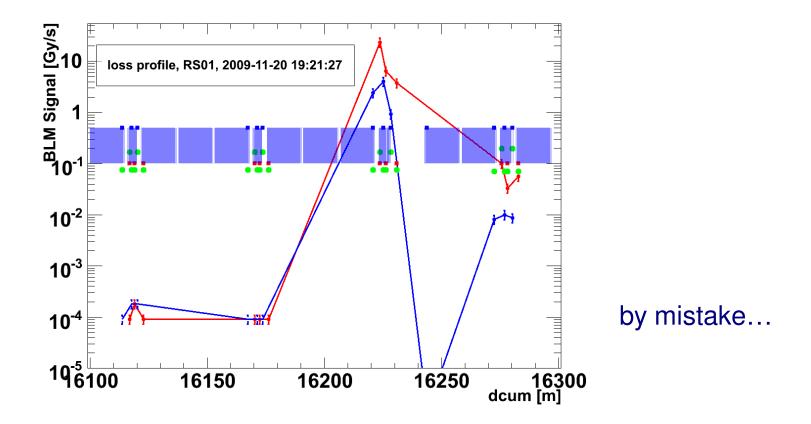


Figure 4. Damage observed on the inside of the vacuum chamber, on the beam impact side. A groove approximately 110 cm long due to removed material was clearly visible, starting at about 30 cm from the entrance.

During high intensity extraction on 25/10/04 an incident occurred in which the vacuum chamber of the TT40 magnet QTRF4002 was badly damaged.


The beam was a 450 GeV full LHC injection batch of 3.4 10¹³ p+ in 288 bunches, and was extracted from SPS LSS4 with the wrong trajectory

= 4.4 e12 at 3.5 TeV

LHC status and plans

We can still cause quenchinos with very little beam

For future reference – note low quench level of around 2 e9 at 450 GeV - in line with predictions

04-02-2010

LHC commissioning 2009

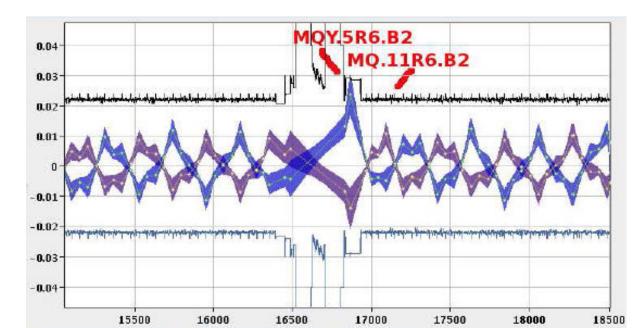
Full set of instrumentation and associated hardware and software commissioned and operational (more-or-less)

Measurement and control of key beam parameters

- □ Orbit, tune, chromaticity, coupling, dispersion
- Beam loss
- □ Beam size
- □ Lifetime optimization: tune, chromaticity, orbit
- Energy matching
- Full program of aperture checks performed covering arcs and insertions

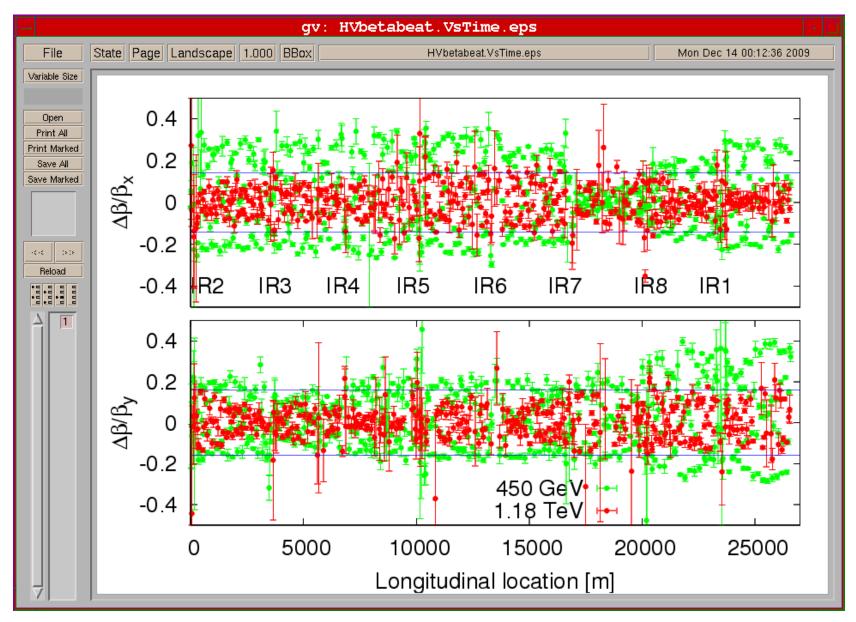
Availability of hardware, instrumentation and software impressive

Good preparation – fast problem resolution



Experiments' magnets

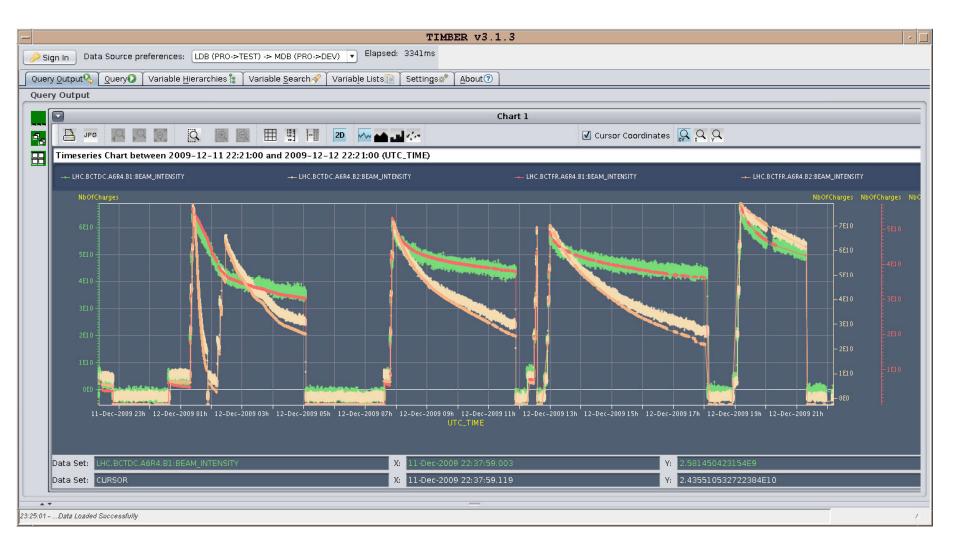
- □ Solenoids brought on without fuss and corrected
- Alice & LHCb dipoles brought on at 450 GeV issues with transfer functions
- Two beam operation both with and without bumps
- Optics checks
 - □ beating & correction
- Full program of polarity checks of correctors and BPMs



- Beam clearance seems to be OK, above or equal to 7.
- Some measured bottlenecks agree with model predictions using measured functions.
- Aperture is out of budget due to the large-beating
 - N1 < 7 even reducing the closed orbit budget to the measured
 3.2 mm peak closed orbit
- Correcting beta beating seems mandatory at 450 GeV

Beating: 450 & 1180 GeV

LHC commissioning 2009



- Man was never meant to do collisions at 450 GeV (in the LHC at least)
- Full program of machine protection, collimation, aperture and LBDS checks allowed "stable beams" to be declared.
- Multi-bunch and higher intensities achieved
 16 bunches total 1.85 x 10¹¹
- "Lumi scans" tested successfully
- Lots of events collected
 - □ 6 reasonably happy experiments

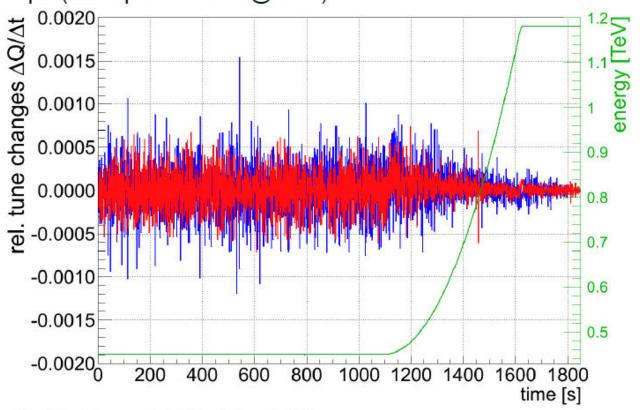
 Clear issue here for the machine was the activity in the vertical tune spectra and vertical emittance blow-up

Collisions at 450 GeV

After 20 days commissioning this smells faintly of showing off

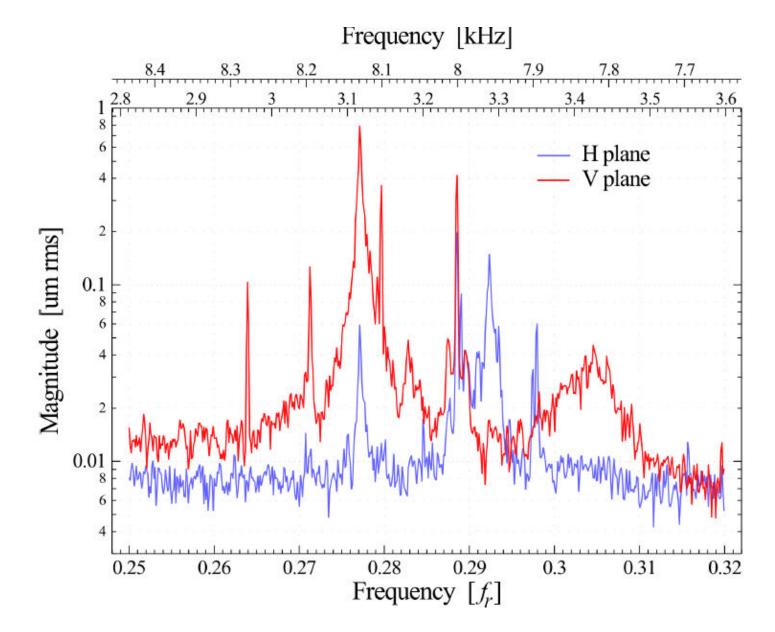
04-02-2010

LHC commissioning 2009


Residual micron amplitude tune oscillations:
 PRO: beneficial for the FFT-based systems!
 CON: bad for beam life-time and Q-PLL operation

- 8 kHz line, broad frequency "hump", and other spectra perturbations:
 - □ Reduction of beam life-time, emittance blow-up, ...
 - Potential to perturb FFT-based Q-Tracker

Maybe not of direct relevance to this audience but this sort of thing can give you a real headache


Example (3. ramp 2009-11-30 @00:15):

- Residual tune stability ΔQ ≈ 5·10⁻⁴
 - no particular frequency dependence \rightarrow 'white noise'
 - Little/no Q' but energy dependence → power converter noise?

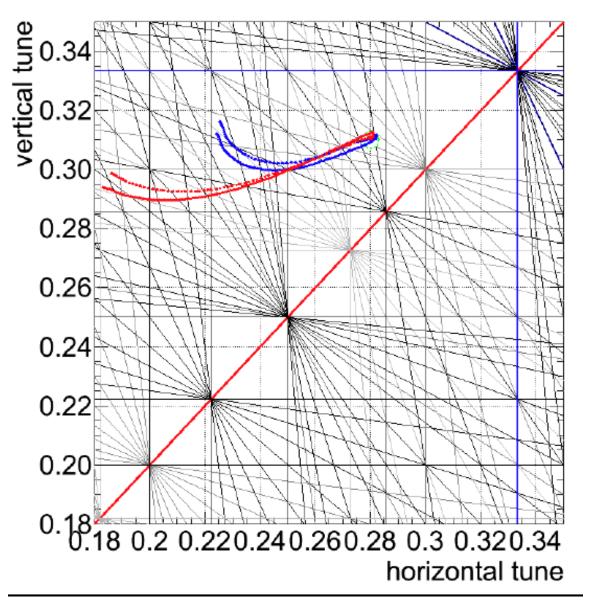
Possible source candidates under examination

Evian workshop summary

Nominal cycle: ramp

	Date	Beam	Energy [GeV]	Comment
1	24/11/09	1	560	Tunes
2	29/11/09	1	1043	1/3 integer
3	30/11/09	1/2	1180	No full precycle No feedback
4	8/12/09	1/2	1180	B1 lost after 3 minutes at top energy. Feedback on B2
5	13/12/09	1/2	800	Feedback on both beams from here Lost B2 – BPM interlock
6	14/12/09	1/2	1180	1 hour "quiet beams" – collisions in all 4 experiments
7	15/12/09	1/2	1180	Beam lost to rogue real-time packet
8	16/12/09	1/2	1180	Squeeze/collisions

Seriously impressive



Ramp looked good (and reproducible)

Both tune feedback and feed-forward operational

- Tune evolution not understood (in particular the differences between beams)
- Fidel corrections to be updated with best estimate for snapback correction
- Orbit need feedback (and perhaps feed-forward)
- Need on-line chromaticity measurement
- Appropriate incorporation of 450 GeV trims
- RF: commissioning of emittance blow up
- Ramp with separation bumps

Not understood

First beam tests of betatron squeeze were successful!

- □ Mechanics of the squeeze works well.
- □ good agreement with the expected beta values.
- Some issues were identified and are being addressed
 - □ Improve further LSA implementation (incorporation, BP handling)
 - □ New functionalities: change of optics matrices for orbit feedback;
 - □ Handle stop points for critical properties (collimators).

Feedbacks (preliminary):

- □ Orbit feedback would be highly appreciated, as expected!
- □ If simulations are confirmed, tune feedback seem less critical.

- The knowledge of the magnetic model of the LHC is remarkable and has been one of the key elements of a very smooth beam commissioning
- Huge parameter space, mistakes made, lessons learnt etc but...
- Tunes, energy matching, optics close to the model already
- Some discrepancies being hunted down (450 GeV particularly)
- Bodes very well for the future.

Magnet model

- Largest momentum offsets by sector:
 - -0.27 permill in sector 56 / beam1
 - +0.32 permill in sector 78 / beam2

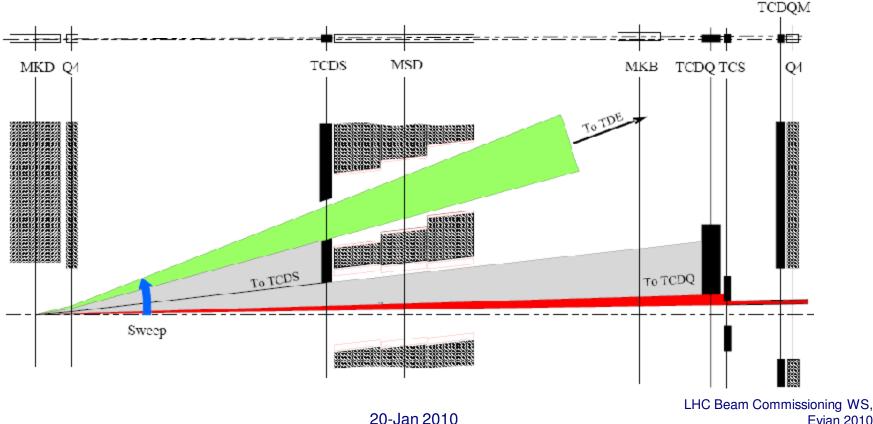
Beam	Parameter	Meas	trim	
1	QH	0.28	-0.023	
1	QV	0.31	0.049	
2	QH 0.28		-0.089	
2	QV	0.31	0.015	
1	QPH	5	-16	
1	QPV 7		2	
2	QPH 9		-15	
2	QPV	8	2	

and check out the beta beating at 1.2 TeV

LHC commissioning 2009

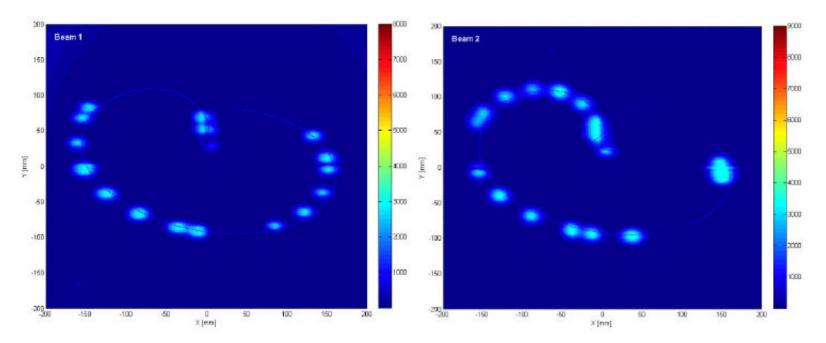
- Fully deployed with precyling prescriptions in place for nearly all circuits
- One hour long with all magnet circuits being put through a magnetic ringer.
- Very good reproducibility when re-injecting
 this will save us.

-		Monitori	ng applicatio	on. Currently	monitoring :	LHC - [1 su	bscription [•
U	нс 🔻 🔗 🔯 🔻	RBA: Ihcop							
.)isplay the graphs on	column(s) for	5,150 <u>*</u> points	Minimum graph width	150 ÷ px - heig	jht 150 - px	show legend 🕨	smooth graphs	✓ show points]
monito	ring SUB_51 for 180	devices : RPMBA.RR57.R	QTL11.R5B1/SUB_51						Fixed Graph Clos
3500 -				/	/				
3000 -									
2500 -									
2000 -									
1500 - 1000 -									
500 -									
0 -									
- 500 -						\bigcirc			
	06	:10 06:	15 06:	20 06	:25 06:	30 06	5:35	06:40	06:45
									7


LHC commissioning 2009

TCDQ/TCSG protects Q4 and downstream elements

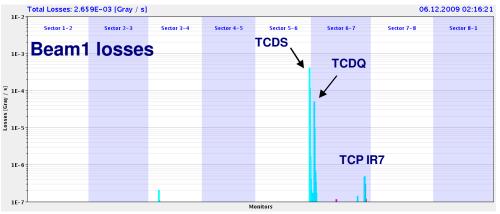
... in case of asynchronous beam dump or asynch. firing of MKD kickers where part of beam is not absorbed by TCDS

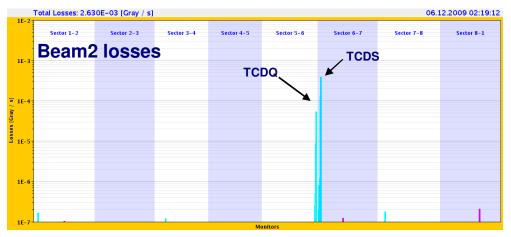

- TCDS (fixed) 6 m long diluter protects extraction septum
- TCDQ/TCS (mobile) 7 m long diluter kept at about 7-8 σ from the beam, at all times

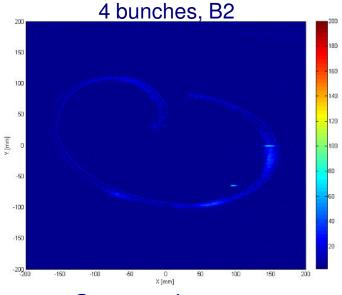
LHC Beam Dump System

Jan Uythoven

Beams for physics dumped, at the right place! 450 GeV

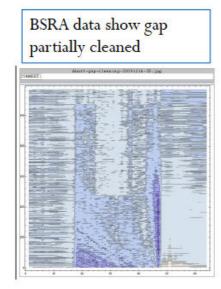

Beam dumps, 16 bunches + pilot, 14/12/09 around 21:00 BTVDD image = position on beam dump block TDE Comparison with calculated positions from measured kicker magnet waveforms.


Evian workshop summary


Check of TCDQ protection (dump of debunched beam):

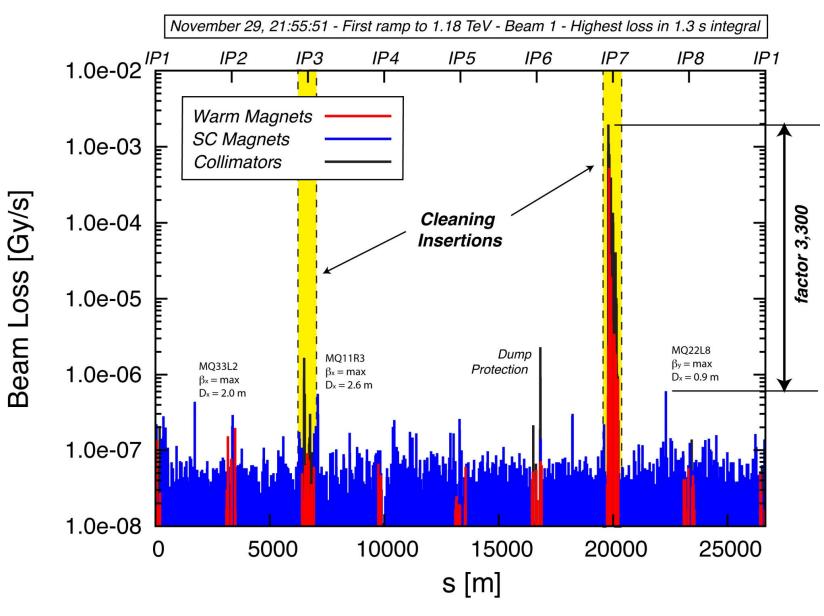
 Losses concentrated on dump protection devices, with 0.1% on collimators

Asynchronous dump tests:


Sweep shape on BTVDD as expected

- The beam dumping systems worked very well and the XPOC and IPOC systems caught all failures
 - Only real failures were the Synchronous-Asynchronous dumps: solved after TSU firmware upgrade
- Many tests with beam outstanding
 - Dump at intermediate energies
 - Positioning of protection devices
 - Follow commissioning procedures for increasing energy and intensity

- Undulator and synchrotron light monitor successfully commissioned for beam 2
- Beam 1 remains to be commissioned
- Abort Gap Cleaning "works" already during first tests!
 - But needs to be further optimized to clean over the full 3 µs while limiting the losses outside the abort gap
 - □ About 10 % of the beam was left in the gap
- Need to commission the Abort Gap Monitoring Interlock



Excellent initial beam based commissioning following careful preparation and tests

- Full program of beam based positioning
- System works as designed. Expected cleaning and leakage processes seen.
- Possible to verify passive protection: losses at primary collimators.
- Hierarchy established and respected in tests
- Collimation setup remained valid over 6 days, relying on orbit reproducibility and optics stability
- Even the Roman pots got a run out

Evian workshop summary

Ralph Assmann

Machine Protection

Mission critical backbone


- Beam Interlock System
- Safe Machine Parameter
- □ Plus inputs to/from other systems (e.g. timing, BCT)
- A large multitude of user inputs
- The beam driving a subtle interplay of:
 - □ LBDS, Collimation, protection devices, RF...
 - □ Instrumentation (BLMs, BCT, BPMs...)
 - □ Aperture
 - Optics

Careful testing before beam

Full set of beam based tests

Clearly the critical path

Machine protection – user input

	2		R1	L2	R2	U3	S 3	L4	R4	L5	R5	L6	R6	U7	S7	L8	R 8	L1	CCC	Inj1	Inj2	Σ
-	1	Vacuum (Sector valves)	Lasses	••	**	••	Lenerater	••														30
		("X valves")	•	٠	٠						•		1			٠	•	1	1		1	30
	2	PIC (for essential circuits)	٠	٠	٠	++		٠	٠	٠	٠	٠	٠	++		٠	٠	٠				16
	3	BLM (at aperture limitations)		•			•	٠		٠		٠			٠	٠		٠				8
	4	Warm magnets (WIC)		٠		٠			٠	٠		٠		٠		٠]	٠				8
	5	Beam Dumping system										٠	•							٠	٠	4
	6	Injection Kicker			•												•				•	4
	7	Access (LASS + E.I.S.)	Ĵ.	j		•	1	•	٠]							•			4
UNmaskable	8	Operator Buttons (CCC)																	٠	٠	٠	3
38	9	Programmed Beam Dump							i i) 		1	1	Ì			î.	1	••			2
N	10	Safe Machine Parameters sys		1	1	1																2
3	11	ATLAS (Detector part)	•				ļ,													•	. 🔶	3
	12	"" (Movable device)	••																			2
	13	ALICE (Detector part)			•											2	2			•	٠	3
	14	CMS (Detector part)									**	-					-			٠	۲	4
	15	LHCb (Detector part)															٠			٠	٠	3
	16	"" (Movable device)					1			-		5	5			2	٠					1
	17	LHCF																				1
	18	TOTEM	1								••	0	2				6			۲	•	4
[19	Collimation (Env. Param.)	••	••	••	••				••	••	••		••		••	••			++	++	24
	20	Collimation (Motor pos.)	• •	••	••	••				••	••	••		••		••	••			••	**	26
[21	PIC (for auxiliary circuits)	٠	•	•	**	Ĵ.	٠	•	٠	٠	٠	٠	**		٠	٠	٠				16
	22	BLM (in the arcs)		٠				٠		٠	8	٠			٠	٠		٠	-			8
[23	Screens		٠		••			••				••	•			•					9
e	24	Fast Magnet Current ch. Mon			**		***			1	٠	1			***		1	٠		**		16
Maskable	25	RF & Transverse Damper						••	••													4
	26	Beam Aperture Kicker						••														2
	27	TCDQ	Ĩ.				Î					••	1			<u>.</u>	Ì	1				2
	28	Fast BCT (di/dt)	Ĵ	1	1	Ĵ.)	1	**	1)]					2
	29	Beam excursion (BPM)											••		• •							4
	30	MSI Power Conv. (sum fault)		÷						1	1	1					Ì	1		٠	•	2
	31	Experimental Magnets		0	•		0				•						٠					4
	32	ALICE-ZDC																		٠		1
				• : In	divid	ual Be	eam c	onne	ctions	5	Both Beams connections				Not connected				Total: 216			

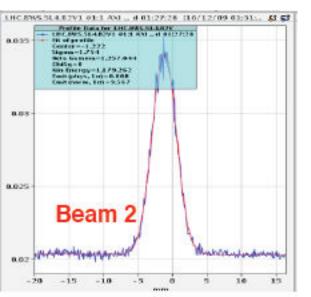
04-02-2010

BEAM INSTRUMENTATION

- Excellent performance of BPM system
- Very stable orbit (V drift ~ 15µm/h)
 - Better correction possible.
 - Should spend some time to establish a better global correction (and avoid strong local corrections) before setting up collimators.
- Orbit feedback
 - Basically operational, time needed for testing
 - Essential for ramp and squeeze

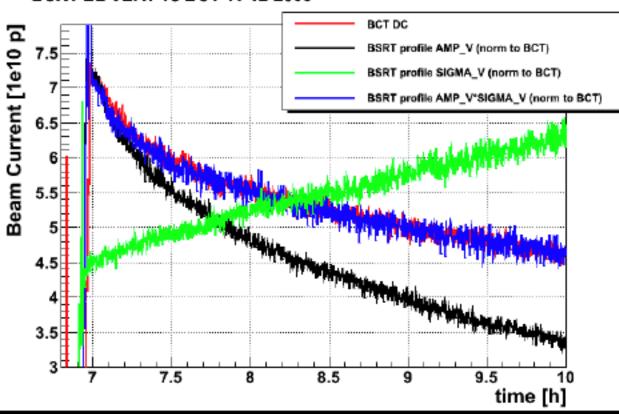
29/01/10

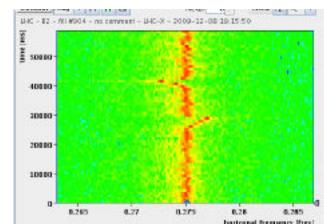
S


- BLMs correctly removes the BEAM PERMIT signal if measurements are over threshold. No reliability issues observed.
- System is well understood since it has been up and running for more than a year. VERY IMPRESSIVE.
- Some availability issues (false dumps) at energies higher than the injection are to be expected if thresholds don't change in some regions.
- Continuous monitoring of noise is required.
- Sequencer initiated tests will be enforced to be run regularly.
- More tests to verify and adjust the threshold values are needed.
- Investigation of spurious signals from the SEMs are ongoing and first corrections are being implemented.

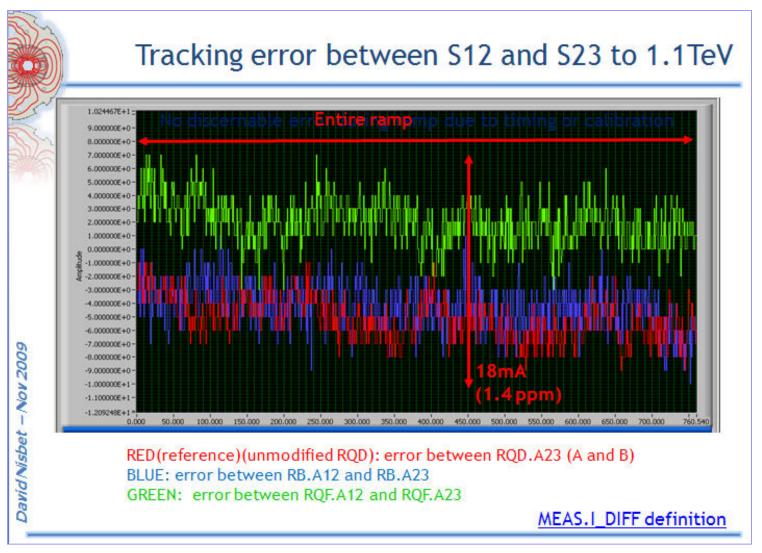
 BTVs and Wire scanners works quite reliably – still few bugs to be fixed

Synchrotron Light Monitors

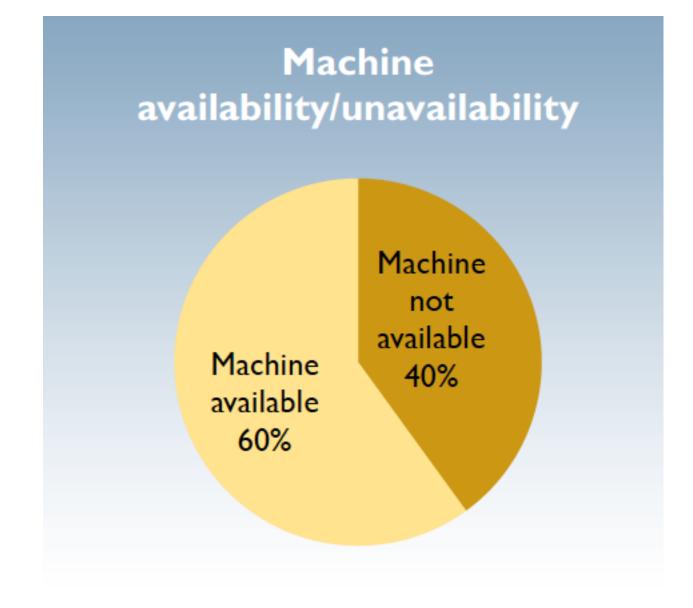

- Systems worked basically as designed need the other undulator on
- Deeper analysis of performances on going
- □ Cross calibration with respect to Fast BCTs and Wire scanners needed

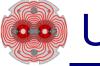

Vertical emittance blow-up – beam 2

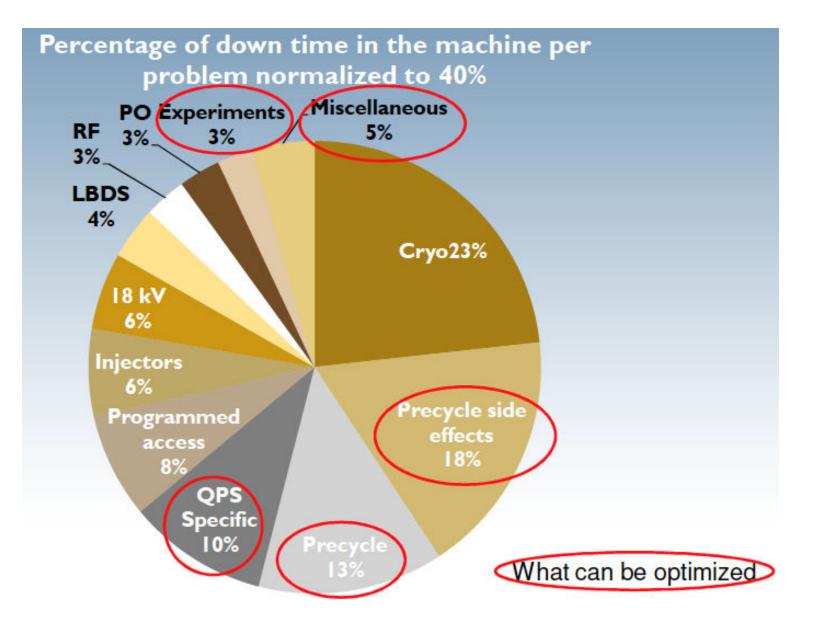
BSRT B2 VERT vs BCT 11-12-2009



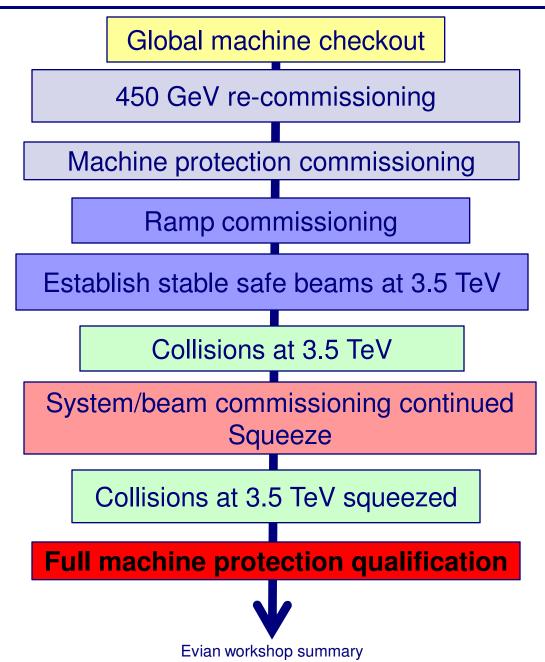
- The Base-Band-Tune (BBQ) system was work horse from LHC day one
 - No hardware, minimal software and only a few beam related issues
 - □ Most measurements were done with residual beam excitation
 - \square Q measurements resolution in the range of 10⁻⁴ ... 10⁻⁵
- PLL partially deployed to be fully commissioned
- Feedback operational via BBQ continuous FFT




Unmentioned because brilliant


This will also save us...

Unavailability

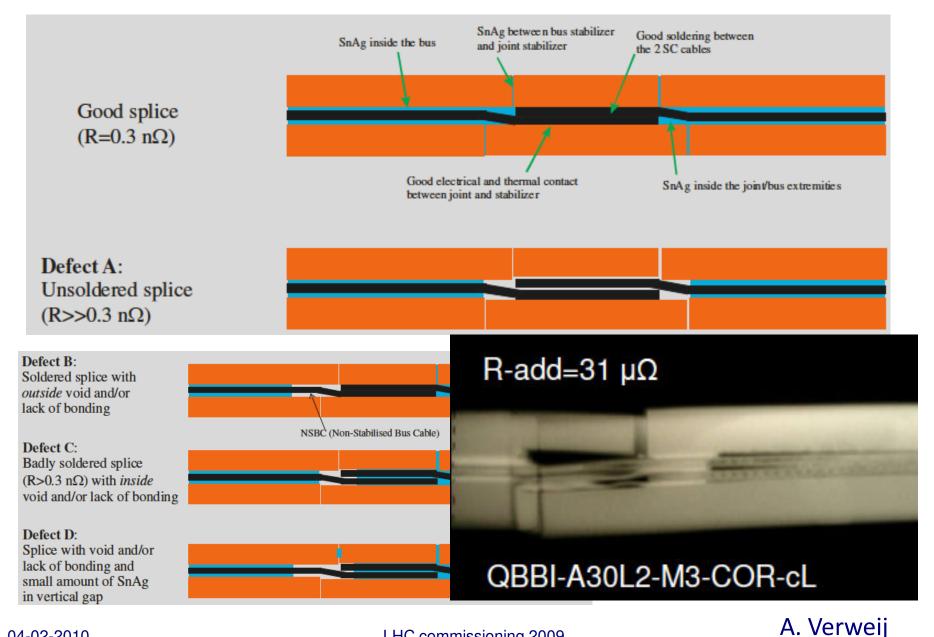

2010

04-02-2010

- Beam commissioning continued
 - □ Through to colliding, safe, stable, squeezed beams
- Consolidation & physics
- Increased intensity phase 1 & associated machine protection qualification
 - □ Establish secure and reproducible operations and fully field test
- Consolidation & physics
- Increased intensity phase 2 & associated machine protection qualification
- Etc.

Beam commissioning strategy 2010

29/01/10

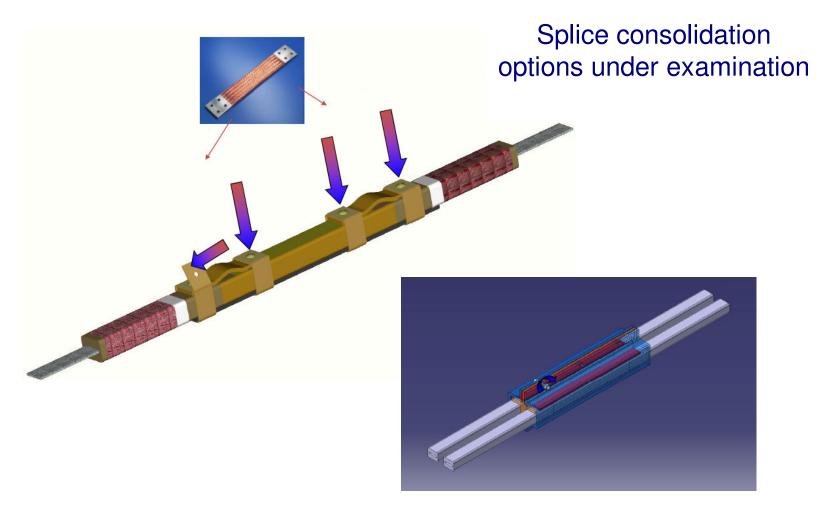

Step	E [TeV]	Fill scheme	N	β* [m] IP1 / 2 / 5 / 8	Run time (indicative)
1 2 3	0.45 3.5 3.5	2x2 2x2 2x2*	5x10 ¹⁰ 2 - 5x10 ¹⁰ 2 - 5x10 ¹⁰	11 / 10 / 11 / 10 11 / 10 / 11 / 10 2 / 10 / 2 / 2	Weeks
4	3.5 3.5	43x43 156x156	5x10 ¹⁰ 5x10 ¹⁰	2 / 10 / 2 / 2 2 / 10 / 2 / 2	Weeks/Months
6 7	3.5 3.5	156x156 50 ns - 144**	9x10 ¹⁰ 7x10 ¹⁰	2 / 10 / 2 / 2 2.5 / 3 / 2.5 / 3	Months
8 9	3.5 3.5	50 ns - 288 50 ns - 720		2.5 / 3 / 2.5 / 3 2.5 / 3 / 2.5 / 3	Months

* Turn on crossing angle at IP1.

**Turn on crossing angle at all IPs.

- Bring on the crossing angle sooner rather that later and don't waste too much time with 156 bunches per beam
- Explore higher bunch intensities early.
- ~200 pb⁻¹ if things go well

Splices – we still have a problem


04-02-2010

circuit	τ [S]	Condition	Max <i>R</i> _{addit} for RRR _{bus} =100	Max <i>R</i> _{addit} for RRR _{bus} =160		
RB	50	GHe with <i>t</i> _{prop} =10 s	80	87		
		GHe with t _{prop} =20 s	>100	>100		
		LHe without He cooling	58	65		
		LHe with He cooling	76	83		
RQ	10	GHe with t _{prop} =10 s	>150	>150		
		GHe with t _{prop} =20 s	>150	>150		
		LHe without He cooling	74	80		
		LHe with He cooling	80	84		

Essential message is that we can't, with any confidence, go above 3.5 TeV in 2010

04-02-2010

Near future looks like being...

- Run 2010 at 3.5 TeV
 - □ Estimate integrated luminosity 100 200 pb⁻¹
- Short winter stop
 - □ Carry on running at 3.5 TeV with the aim of delivering at least 1 fb⁻
- Long shutdown (~1 year)
 - □ Fix all splices properly LHC good for 7 TeV (give or take some dipole re-training).
 - □ 6.5 TeV should be relatively easy
- Head for nominal performance

NB: hot off the Chamonix press

Conclusions 1/2

- A lot of hard work over the years has enable a truly impressive period of initial commissioning with beam.
- Initial indications are that the LHC:
 - □ is reproducible;
 - magnetically well understood;
 - optically in good shape;
 - is armed with a mighty set of instrumentation, software, and hardware systems.
- Lots still to sort out, in particular...
- Operations, controls, instrumentation etc. have the capability to unnecessarily stress the machine protection system – issues must be resolved.

Long way to go before we are ready to go much beyond the safe beam limit

- 2010 ~4 weeks to establish stable, safe beams at 3.5 TeV
- Extended running period around the safe beam limit
 With blocked MD periods as required
- Formal review process of machine protection before starting a stepwise increase in intensity
 - Each step up in intensity to be followed by an extended running period
- Heading for 10³² cm⁻²s⁻¹ in 2010 and hopefully between 100 – 200 pb⁻¹