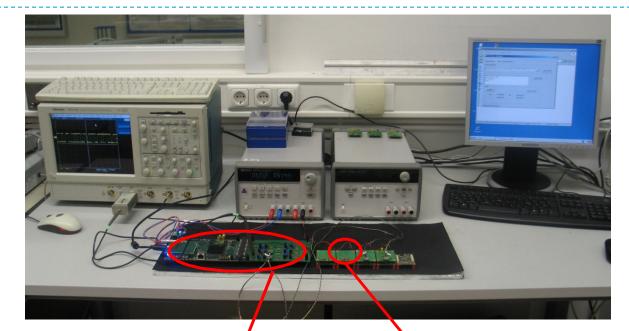


Stave Emulator and Regulator Test


L. Gonella, D. Arutinov, M. Barbero, A. Eyring, F. Hügging, M. Karagounis, H. Krüger, N. Wermes Physikalisches Institut, Uni Bonn

Stave Emulator Test Bench

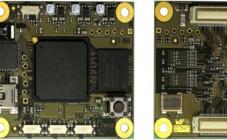
- The stave emulator is a test system which allows to evaluate system aspects and custom developed hardware for the ATLAS Pixel Detector for sLHC, such as
 - physical layer data transmission: LVDS drivers/receivers, cables, connectors, ...
 - data coding schemes: raw, 8B/10B, 64B/66B, …
 - powering concepts: serial, dc-dc, switched cap, ...
 - DCS concepts: voltage monitoring, control of bypass switch, reset, ...
 - data management of the End-Of-Stave controller, ...
 - ...
- It uses
 - FPGAs to emulate the modules and the end-of-stave controller
 - interconnection boards to provide support for different cable and connector options, LVDS transceiver chips, power supply options (parallel, DC/DC or SP), AC-coupling
 - a DCS test board (COBOLT) developed in Wuppertal providing multi-channel ADC and GPIO to test DCS functionalities

 \rightarrow flexible and realistic test bench

Stave Emulator

End-Of-Stave emulator unit

Module emulator unit



Hardware

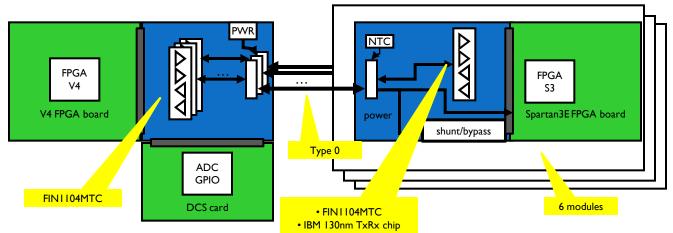
FPGA Boards

- Module \rightarrow Spartan 3E FPGA
 - Commercial FPGA board (Trenz TEO300B)
 - Spartan XC3S1600E, 64 Mbyte DDR RAM, 32 Mbit Flash, **USB** interface
 - Approx. size of a 2x2 FE-I4 module
- End-Of-Stave Controller \rightarrow Virtex4 FPGA
 - FPGA board developed in Bonn for read-out of DEPFET modules
 - XILINX Virtex 4 LX40-1148, 288Mbit RLDRAM Should be able to handle >14.4Gbit/s, µC-based system monitor (ADM1062), USB 2.0 connector, 16Mbit async. SRAM, EUDET TLU connection, Multiple high speed connectors
- Interconnection boards
 - Custom developed
 - Tailor different test wishes (data transmission, powering option, ...)
 - Define successive stave emulator versions
 - Iterate the design of interconnection boards to add more functionalities and custom developed hardware when available

Spartan 3E board

VIRTEX4 board

Firmware and Software


- Firmware for data transmission tests
 - PRBS of different length, 8b10b encoded data
 - FE-I4 code for Spartan3E
 - Bit Error Rate firmware for Virtex4
 - uses PRBS;
 - clock frequency synthesized with Digital Clock Manager;
 - compares data out with data in;
 - delay adjustment between data out and data in done in 2 steps: coarse delay = 1 clk period, fine delay = 75ps

Software

 Application developed with C++ and Qt (GUI) allows to download firmware on the FPGA, read/write data from/to FPGA

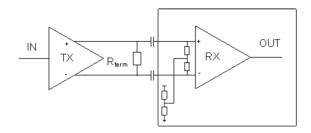
Baseline Design

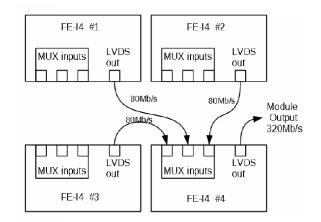
- "6 modules-stave"
- Connection EoS module using Type 0 cable
- Powering
 - parallel
 - serial using commercial shunt regulator
 - commercial bypass transistor on modules to test protection option
- DC-coupled data transmission with different LVDS transceiver chips
 - on End-Of-Stave side: commercial FIN1104MTC transceiver chip
 - on module side: commercial FIN1104MTC or IBM 130nm transceiver chip (i.e. FE-I4 LVDS TX and RX)
- NTC to measure module temperature

Tests with Baseline Design

- Bit Error Rate Tests
 - study the performance of the LVDS TX and RX for FE-I4
 - Comparison with commercial transceiver chip
 - ▶ V_{dd} = 1.2-1.5V
 - ▶ I_{bias} higher than nominal
 - parallel powering, DC coupled data transmission, PRBS8-16-24, 160Mbps
 - → IBM 130nm transceiver chip runs error free with PRBS24 at 160Mbps with $V_{dd} = 1.2V(38e^{12} bits$ transmitted)

Tests with COBOLT

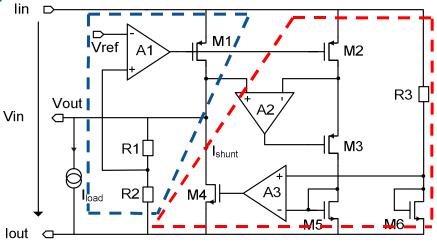

- Serial powering chain
- Some DCS functionalities have been successfully tested
 - module temperature measuring with NTC
 - control of bypass transistor
 - monitoring of module voltage through bypass control line


		Nominal	1.2∨	I.5V
RX	l _{bn}	-35uA	-100uA	-150uA
	I _{bp}	35uA	60uA	90uA
ТХ	I _{bp}	60uA	60uA	90uA
	U _{bias}	600mV (1.2V) 750mV (1.5V)	600mV	750mV

Next Stave Emulator Version

- Second version of interconnection board for module emulator unit available
 - more custom-developed hardware
 - IBM 130nm LVDS transceiver chip
 - External biasing circuitry for RX inputs (\rightarrow AC-coupled data transmission)
 - IBM 130nm LVDS tri-state driver
 - ShuntLDO regulator
- Test plan
 - AC-coupling at TX/RX level with FEI4 LVDS transceiver chip
 - Multiplexing of data out of different FEs
 - w/ tri-state driver
 - FEs in master-slave configuration
 - Test of ShuntLDO regulator in a real serially powered system
 - Test of ShuntLDO pure LDO regulator operation with shunt capability switched-off

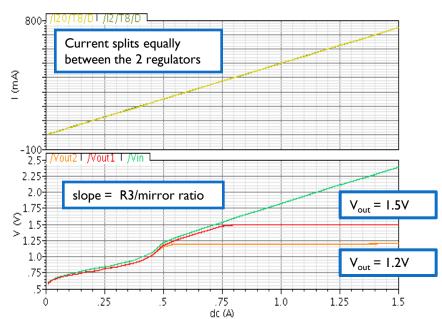
possible RX inputs self-biasing integrated circuit for FE-I4


Goal: Set up a serially powered stave with AC-coupled data transmission and FE data output multiplexing, using real FE-I4 components

ShuntLDO: Working Principle

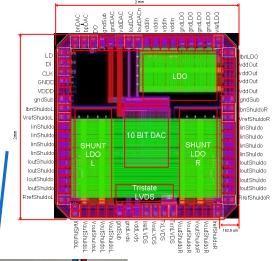
combination of a LDO and a shunt transistor

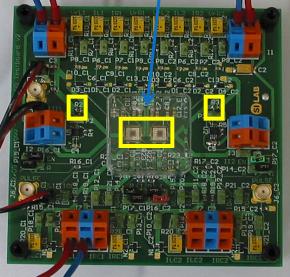
- R_{slope} of the shunt is replaced by the LDO power transistor
- shunt transistor is part of the LDO load
- shunt regulation circuitry ensures constant
 I_{load}
 - I_{ref} set by R3, depends on V_{in} (\rightarrow I_{in})
 - I_{MI} mirrored and drained in M5
 - I_{MI} and I_{ref} compared in A3
 - M4 shunts the current not drawn by the load
- LDO regulation loop sets constant output voltageV_{out}
 - LDO compensates output potential difference


simplified schematics

ShuntLDO : Features

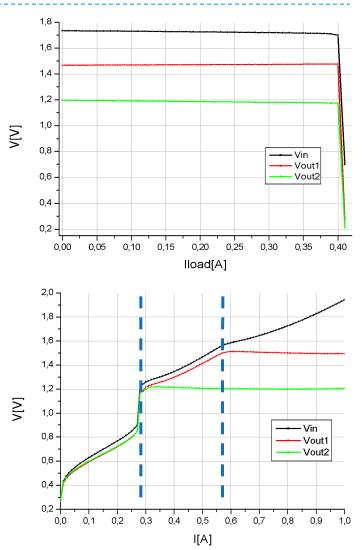
- ShuntLDO regulators having different output voltages can be placed in parallel without any problem regarding mismatch & shunt current distribution
 - resistor R3 mismatch will lead to some variation of shunt current (10-20%) but will not destroy the regulator
- ShuntLDO can cope with an increased supply current if one FE-I4 does not contribute to the regulation e.g. disconnected wire bond
 - ► I_{shunt} will increase
- can be used as an ordinary LDO when shunt is disabled


Parallel placed regulators with different output voltages - simulation results -



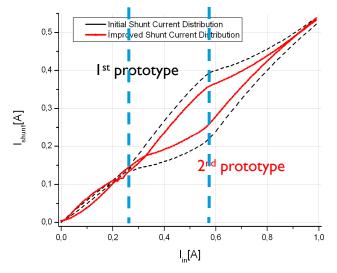
DC Response

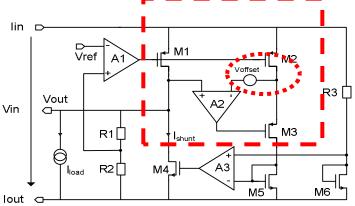
ShuntLDO : Prototypes and Test System


- 2 prototypes submitted and tested
 - September 2008, March 2009
 - $V_{out} = 1.2-1.5V$, $V_{dropout}MIN = 200mV$, $I_{shunt}MAX = 0.5A$, $R_{in} = 4\Omega$, $R_{out} = 30m\Omega$
- test setup
 - two ShuntLDO regulators connected in parallel on the PCB
 - biasing & reference voltage is provided externally
 - input & load current is provided by programmable Keithley sourcemeter
 - input & output voltages are measured automatically using a Labview based system
 - shunt current is measured by 10mΩ series resistors and instrumentation opamp

2 ShuntLDO in Parallel

- Load Regulation Measurement
 - I.5(I.2)V output sees fix I_{load} = 0.4A
 - I.2(I.5)V output has variable I_{load}
 - V_{in} and V_{out} collapse when the overall I_{load} reaches I_{supply} (= 0.8A)
 - effective output impedance R = 60mΩ (incl. wire bonds and PCB traces)
- Generation of different V_{out}
 - V_{out} settles at different potentials
 - V_{out1} and V_{out2} slightly decrease with rising input current (V drop on ground rails leads to smaller effective reference voltages)
 - non constant slope of V_{in}
 - $R_{in} \approx 2\Omega$ (after saturation)




L. Gonella - SLHC-PP Annual Meeting - Feb. 2010

Shunt Current Distribution at Start-Up

- unbalanced I_{shunt} distribution at start-up
 - more I_{shunt} flows to the regulator which saturates first (i.e. to the regulator with lower V_{out})
 - however I_{shunt}MAX is not exceed
- improvement of shunt distribution as soon as both transistors are saturated
- non constant slope of V_{in} closely related to
 I_{shunt} distribution
- bad mirroring accuracy for non saturated transistors due to offset at the input of A2
 - wrong current is compared to the reference
- hypothesis confirmed by simulations and second vin prototype
 - scaling of input transistor of A2 by factor 4 halves the unbalance

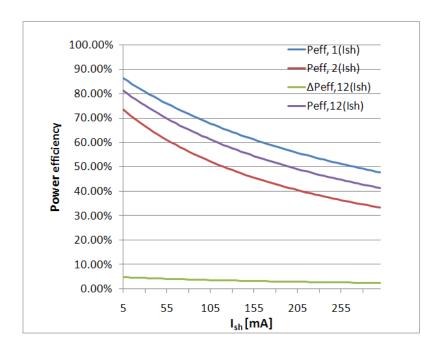
2 SHULDOs in parallel with different V_{out}

Shunt Current Distribution

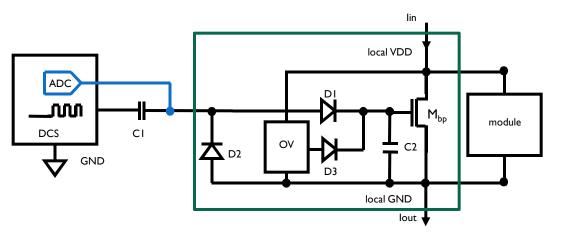
- no problem at start-up if the 2 ShuntLDOs generate the same V_{out}
 - they saturate at the same time

2 ShuntLDOs in parallel with same V_{out} at start-up

- if V_{out} is changed with both regulators being saturated the shunt current changes of about 1.4%
- → Unbalanced I_{shunt} at start-up can be avoided completely by choosing the same V_{out} at start-up and setting different V_{out} afterwards


0,65 -0,60 0,550 0.55 0.548 0,50 -0,546 0,45 -0,544 0,40 0,542 Vout I fixed at 1.2V [shunt[A] 0.35 0,540 2 Vout2 varies (1.2V - 1.5V)0,30 Ishunt1 0,538 0,25 Ishunt2 0,536 0,20 0,534 0,15 0,10 -0,532 0.05 0,530 0,00 1.20 1,25 1,30 1,35 1,40 1,45 1,50 1.55 0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Vout2 [V] Ishunt[A]

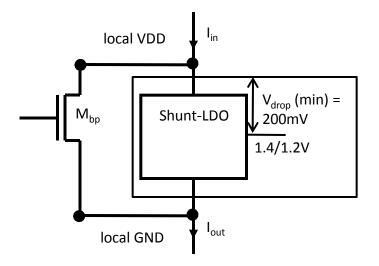
ShuntLDO Efficiency


- Crucial point for SP is the power efficiency of the power converter
- 3 possible sources of inefficiency for the ShuntLDO
 - Dropout voltage V_{drop}
 - Shunt current I_{shunt}
 - ΔV between the 2 V_{out} needed by the FE

Calculation for ATLAS Pixels

	nominal v	worst case	best
V _{out1} [V]	1.4	1.4	1.4
V _{out2} [V]	1.2	1.2	1.2
I _{out1} [A]	0.36	0.4	0.36
I _{out2} [A]	0.24	0.27	0.24
V _{drop} [V]	0.2	0.2	0.1
I _{shunt} [A]	0.03	0.05	0.01
∆U [V]	0.2	0.3	0.2
I _{тот} [А]	0.6	0.67	0.6
P_eff, 1	80.77%	77.78%	90.81%
P_eff, 2	66.67%	59.56%	76.80%
P_eff, 1-2	79.55%	76.14%	90.32%
ΔP_eff,1-2	4.55%	6.57%	5.16%
P_eff,1-2g	75.00%	69.56%	85.16%

Module Protection Chip


- I 30nm CMOS technology
- Bypass transistor
- AC-coupled slow control line
 - \blacktriangleright can be used to monitor V_{mod} when idle
- Independent over voltage protection circuitry
- Specs for 4-chip FE-I4 module^(*)
 - I_{nom} = 2.4A, I_{MAX} = 3.5A
 - AC-signal frequency = 100k 1MHz
 - AC-signal amplitude = V_{gs} bypass
 - OV protection threshold: $V_{\text{thMIN}} = 2V V_{\text{thMAX}} = 2.5V$
 - OV protection time response = 100ns

(*) preliminary

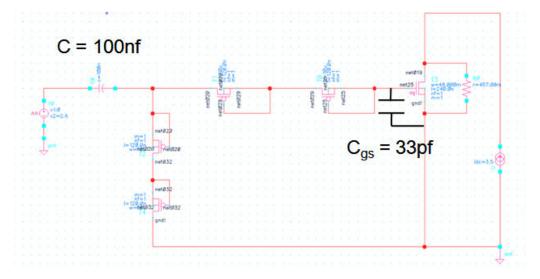
Bypass Transistor

- $I = 3.5A, V \ge 1.6V \pmod{2.5V}$
 - \rightarrow DG NMOS
- Radiation hardness
 - ELT to cut leakage current path
 - Positive V_{th} shift at TID \geq 1 Mrad
 - Account for $\Delta V_{th} = 200 \text{mV}$ in simulations
- Operational temperature
 - Not yet defined, will depend on the sensor
 - Simulations with T = $(-27 \div +27)^{\circ}C$
- Low power consumption when on
- Process Corners

 \rightarrow W = 48mm, L = 0.24 μ m

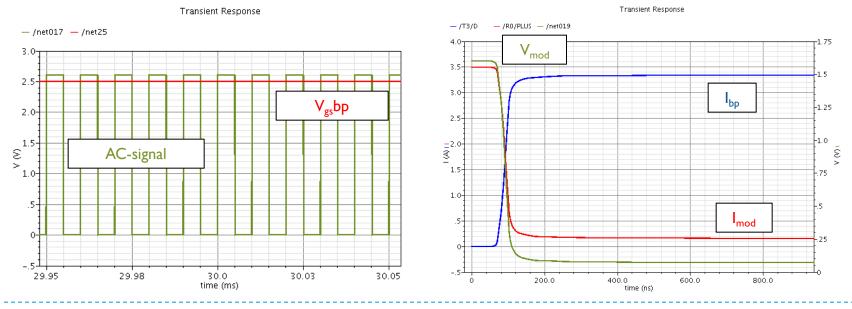
- Power consumption (worst case)
 - Bypass on → 335.1mW
 - Bypass off $\rightarrow 25\mu W$

Control Line


Rectifier

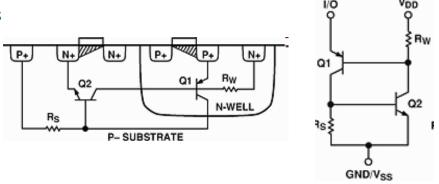
- In a diode connected MOSFET $V_{ds} = V_{gs} \approx V_{th}$
- To increase the power conversion efficiency
 - ▶ $V_{sb} < 0$ when diode is forward biased $\rightarrow V_{th}$ smaller $\rightarrow V_{ds}$ smaller
 - ▶ $V_{sb} > 0$ when diode is reversed biased $\rightarrow V_{th}$ higher \rightarrow smaller leakage current

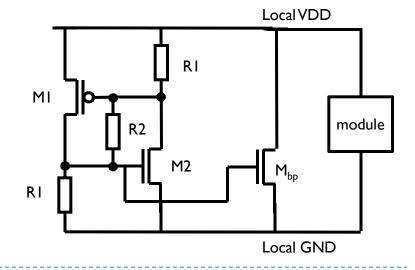
 \rightarrow use PMOS or triple well NMOS (allow to connect bulk in the "forward direction")


Thin oxide transistor

- W = 10µm for radiation hardness
- > 2 PMOS in series to avoid gate oxide breakdown (AC-signal amplitude > 2.5V)

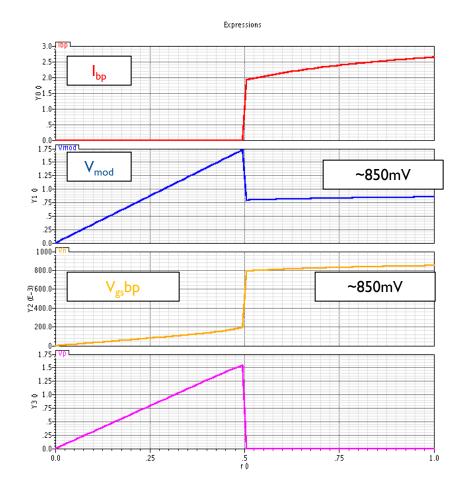
Control Line: Simulation Results


- AC-signal: 2.6V, f = 100k 1MHz
 - V_{gs} bypass: 2.5V
 - ► V_{mod} : I.6V \rightarrow ~60mV
 - ► I_{mod} : 3.5A \rightarrow ~100mA
 - \rightarrow Control from DCS works fine



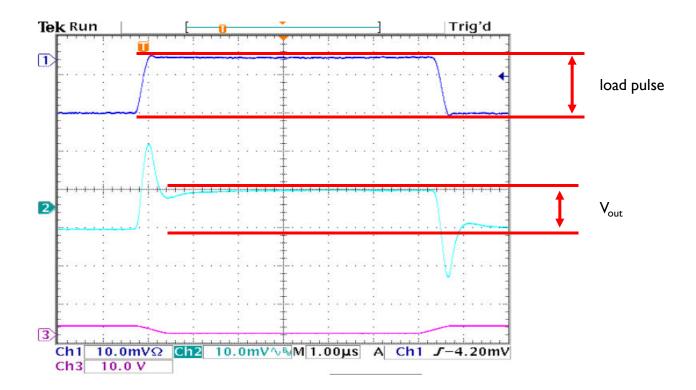
L. Gonella - SLHC-PP Annual Meeting - Feb. 2010

Over-Voltage Protection

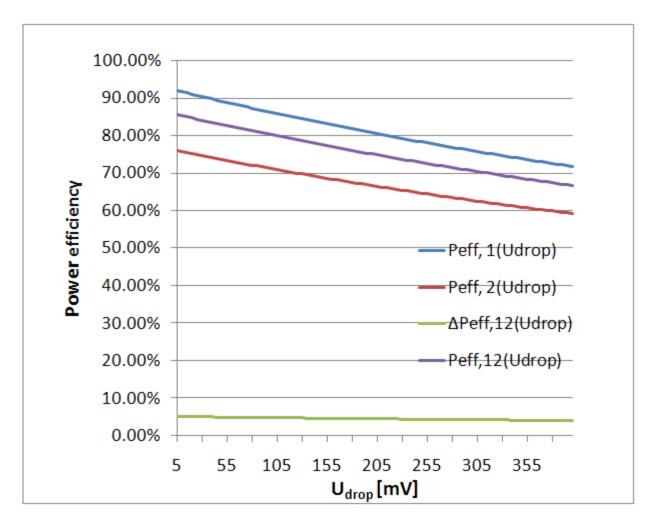

- Silicon Controlled Rectifier
 - Parasitic elements (BJTs) in CMOS technologies (inverter in IO pads)
 - Latch-up condition: I/O voltage $(U_E^{QI}) > VDD$
 - ▶ QI begins to conduct \rightarrow Q2 switches on \rightarrow QI draws even more current
 - Shorts the supply rails when triggered
 - That is exactly what we want!
- Use MOSFETS instead of parasitic BJTs for better control of operation parameters
- Trigger threshold defined by R2/R1
- Want to draw high currents
 - RI small
 - or use additional 'power' NMOS \rightarrow bypass

SCR: Simulation Results

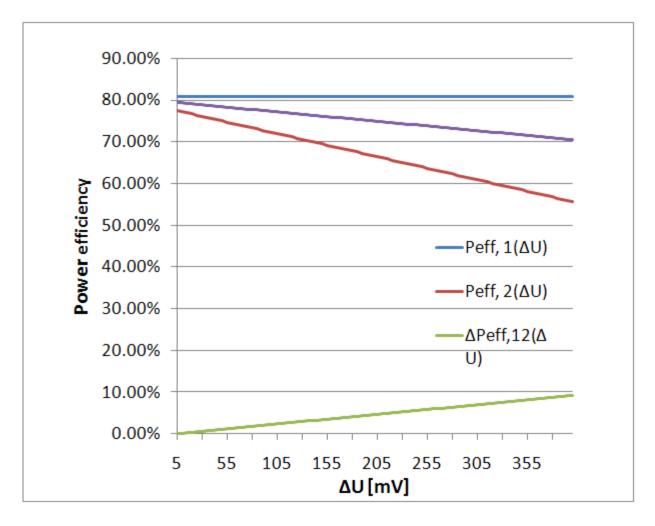
- Sweep of $R_{mod} \rightarrow V_{mod}$ increases, I_{mod} constant
- The voltage across the module is effectively clamped down when the SCR activates, however
 - ► $V_{ds}bp = V_{gs}bp \rightarrow impossible to get V_{mod} = 100mV and V_{gs}bp = 2.5V$
 - ► $V_{mod} = 850 \text{mV} \& I_{bp} \approx 3A \rightarrow \text{too high}$ power density
- A SCR is not the optimal solution for our needs and a different OV protection scheme has to be studied



Summary


- A stave emulator has been developed which allows study of system aspects related to serial powering
 - A baseline design has been set up and the FE-I4 LVDS transceiver has been tested, as well as some DCS functionalities
 - A serial powered emulator stave is under development to study ShuntLDO performance and AC-coupled data transmission
- Characterization of the ShuntLDO has been performed on single devices, with nominal current and voltage values
 - Results show that the ShuntLDO performs according to specifications with a nominal power efficiency of 75%
 - Problems with shunt current distribution have been understood and corrected in next version
- Work is ongoing on the Module Protection Chip

SHULDO: Load Transient Behavior


- I_{load} pulse of I50mA (I5mV measured across I00mΩ)
- IOmV output voltage change

SHULDO Efficiency

SHULDO Efficiency

