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Introduction

I Jets are very important probes of the quark-gluon
plasma (QGP) produced in heavy-ions collisions at LHC
or RHIC.

I Understanding observables such that the jet suppression
or the jet fragmentation function will help to better
characterize the QGP.

I From a theoretical point of view, a complete picture of
the evolution of a jet in a dense medium is still lacking.
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Motivations and goal of the talk

I Jet evolution in a dense medium : medium induced
emissions versus vacuum-like emissions. How can we
include both mechanisms ?

I Our solution is to work with the simplest possible
approximation in parton shower : the leading
double-logarithm approximation (DLA).
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Where does the double-logarithmic phase space
come from ?
Bremsstrahlung law...

Bremsstrahlung spectrum =⇒ energy and angle logarithms.

Formation time due to the virtuality of the parent parton :
tvac ∼ ω/k2

⊥ ∼ 1/(ωθ2).
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Where does the double-logarithmic phase space
come from ?
... vs medium induced radiations

BDMPS-Z spectrum (Baier, Dokshitzer, Mueller, Peigné, and Schiff; Zakharov 1996–97)

NOT DOUBLE LOG !

Medium-induced formation time and broadening
characteristic time scale : tf ∼

√
ω/q̂ from 〈k2

⊥〉 = q̂∆t.
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Vacuum-like emission inside the medium

If tvac � tf : emission triggered by the virtuality and not yet
affected by the momentum broadening.

=⇒ double-logarithmic enhancement of the probability.

Equivalent condition

ω � (q̂/θ4)1/3 ≡ ω0(θ)
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Vacuum-like emission outside the medium

I tvac ≥ L =⇒ vacuum-like emission outside the medium
triggered by the virtuality of the parent parton.

I In terms of energy : ω ≤ 1/(Lθ2).
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Summary : double logarithmic phase space with
a QGP

The energy scale ωc

The condition tf = L defines the energy scale ωc = 1/2q̂L2.
Gluons with energy greater than ωc are always vacuum like.
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How to resum these double logarithms in the
medium ?
Iteration of vacuum-like emissions

Large Nc limit

Emission of a soft gluon by an antenna ⇔ splitting of the
parent antenna into two daughter antennae.

Decoherence time
I Reminder : color coherence is responsible for angular

ordering in vacuum cascades

I In the medium, an antenna loses its color coherence
after a time tcoh = 1/(q̂θ2

qq̄)1/3.
(Mahtar-Tani, Salgado, Tywoniuk, 2010-11 ; Casalderrey-Solana, Iancu, 2011)
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Coherence in vacuum vs (de)coherence in the
medium

The angular scale θc
The condition tcoh = L gives the definition of the critical
angle θc = 2/

√
q̂L3. Antennae with angles greater than θc

always lose their coherence propagating over a distance L.
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How to resum these double logarithms in the
medium ?

In the leading double-logarithmic approximation, successive
in-medium vacuum-like emissions form angular-ordered
cascades.

Proof

I First case : tvac(ωi , θ
2
i ) ≤ tcoh(ωi−1, θ

2
i−1), the parent

antenna did not lose its coherence during the time
required by the next antenna to be formed ⇒
θ2
i � θ2

i−1.

I Second case : tvac(ωi , θ
2
i ) ≥ tcoh(ωi−1, θ

2
i−1) ⇒

tvac(ωi , θ
2
i ) ≥ tf (ωi , θ

2
i ) or θ2

i ≤ θ2
i−1 ⇒ θ2

i ≤ θ2
i−1
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Consequences on the emissions outside the
medium

I The precedent proof does not apply if the antenna i − 1
is the last inside the medium.

I In that case, the formation time of the next antenna is
larger than L.

Last emission inside the medium

I If θ2
i−1 ≤ θ2

c : the decoherence time is also larger than L
⇒ angular ordering is preserved.

I If θ2
i−1 ≥ θ2

c : the antenna has lost its coherence during
the formation time of the next antenna ⇒ no
constraint on the angle of the next antenna.

(Y. Mehtar-Tani, K. Tywoniuk, Physics Letters B 744, 2015)



Parton shower in a QGP
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Analytical study of jets at DLA

Double differential gluon distribution

T (ω, θ2 | E , θ2
qq̄) ≡ ωθ2 d2N

dωdθ2

⇒ probability of emission of a gluon with energy ω and angle
θ2 from an antenna with energy E and opening angle θ2

qq̄.

In the vacuum at DLA, this quantity satisfies the simple
master equation

Tvac(ω, θ2 | E , θ2
qq̄) = ᾱs+∫ θ2

qq̄

θ2

dθ2
1

θ2
1

∫ 1

ω/E

dz1

z1
ᾱsTvac(ω, θ2 | z1E , θ

2
1)

With a medium, this equation holds only inside the medium
⇒ mathematically, one must take into account “jumps” over
the vetoed region.



Jet fragmentation
in a dense QCD

medium

P. Caucal, E.
Iancu, A.H.

Mueller and G.
Soyez

P.R.L.,120, 2018

Introduction

DL approximation

Resummation up
to DL accuracy

Fragmentation
function

Conclusion

Numerical results : ratio T (ω, θ2)/Tvac(ω, θ2)
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Fragmentation function with fixed-coupling

Definition

Integral over angle between the k⊥ cut-off and θqq̄

⇒ D(ω) ≡ ω dN
dω =

∫ θ2
qq̄

Λ2/ω2
dθ2

θ2 T (ω, θ2)

Remarks
I Formula reliable only for ω � E at DLA.

I Different from the fragmentation function given by
experimentalists represented as a function of the ratio
ω/E where E is the total energy of the jet. Here, “our”
E is an unobservable parameter since in practice, the jet
loses energy via medium-induced radiations.
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Numerical results for the fragmentation function
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(CMS collaboration, Phys. Rev. C 90, 2014)
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Results beyond DLA
Preliminary results

I Running coupling + DLA : ᾱsPgg (z)→ ᾱs(k2
⊥) 1

z .

I Running coupling + NDLA :
ᾱsPgg (z)→ ᾱs(k2

⊥) 1
z

(
1− 11

12z
)
.
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Conclusion

In perspective

I Estimate the energy loss by a jet at next-to-double-log
accuracy.

I Monte-Carlo simulation : build an event generator
which will include the full splitting functions (hence,
energy conservation) for the vacuum-like cascades and
the medium-induced cascades.
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Thank you for listening !
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What about the energy loss ?

Energy loss is negligible for any parton of the cascade
inside the medium (except for the last one)

I ωloss ∼ q̂t2 energy of the hardest medium induced
emission that can develop during t.

I By the inequality tvac(ωi , θ
2
i )� tf (ωi , θ

2
i ), one finds

that ωloss � ωi .

However...
I Energy loss is not negligible for the last antenna inside

the medium since it will cross the medium along a
distance of order L.

I Medium induced gluon cascades are important for large
angle radiations.



Mathematical interlude : calculation of ωθ2 d2N
dωdθ2

The starting point is the basic formula for the multiplicity in
the vacuum

ωθ2 d2N

dωdθ2
≡ Tvac(ω, θ2 | E , θ2

qq̄) = ᾱs I0
(

2
√
ᾱs log(E/ω) log(θ2

qq̄/θ
2)
)

Then, crossing the vetoed region and violating the angular
ordering is implemented by a convolution in both
energy/angle of the last gluon inside the medium and the
first gluon outside the medium.

Cascade inside the medium + cascade outside

T (ω, θ2) = ᾱs

∫ θ2
qq̄

θ2
c

dθ2
1

θ2
1

∫ E

ω0(θ2
1)

dω1

ω1
Tvac(ω1, θ

2
1 | E , θ2

qq̄)∫ min(θ2
qq̄ ,θ

2
L(ω)

θ2

dθ2
2

θ2
2

∫ min(ω1,ωL(θ2
2))

ω

dω2

ω2
Tvac(ω2, θ

2
2 | ω, θ2)
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Sketch of the mathematical formalism of QCD
with medium

I The quark-gluon plasma is described in its rest frame by
a static density of color charges, following a gaussian
distribution. The resolution of the Yang-Mills equation
in light-cone coordinates x± = (x0 ± x3)/

√
2 and

light-cone gauge gives the statistical distribution of the
gauge field associated A−a .

Correlation functions

〈A−a (x+, x⊥)A−b (y+, y⊥)〉m = g2n0δabδ(x+− y+)γ(x⊥− y⊥)

with γ(x⊥) =
∫ d2k⊥

(2π)2
exp(ik⊥x⊥)
(k2
⊥+m2

D)2

I The medium is assumed to be very dense, with density
n0 � 1. Every observable calculated from the
generating functional with the external field Aa has to
be calculated resuming every order of g2n0.
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Momentum broadening 1/3

I Neglecting for now coherence effects between the two
legs of the antenna, we want to know how a highly
energetic particle propagates through a dense medium.

I Within the eikonal approximation, the resummation of
Feynman diagrams is given by a Fourier transform of a
Wilson line through the medium field A

Mβα(k , p) = 4πδ(k+−p+)p+

∫
dx⊥e

ix⊥(p⊥−k⊥)Wβα(x⊥)

with

Wβα(x⊥) = P
[
e ig

∫∞
−∞A

−
a (x+,x⊥)tadx+

]
βα

⇒ color rotation
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Momentum broadening 2/3

The probability dPbroad (k⊥|p⊥)
dk⊥

of ending up with a quark with
momentum k⊥ due to momentum broadening knowing that
its initial transverse momentum was p⊥ is given by the
modulus square of the matrix element M(k , p).

dPbroad(k⊥ | p⊥)

dk⊥
∝ 1

Nc

∫
dk+Tr

〈
| M(k , p) |2

〉
m

One sees that this calculation involves the medium average

Tr
〈
W (x⊥)W †(y⊥)

〉
m
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The dipole S-matrix Tr〈W (x⊥)W †(y⊥)〉m

The external field A has an given extent L in the x+

direction, the “length” of the medium.
A first order calculation in g2n0 gives

Tr
〈
W (x⊥)W †(y⊥)

〉
m
' 1− g2n0CRL[γ(0)− γ(x⊥ − y⊥)]

Resumming to all orders, the dipole total cross sections is

Tr
〈
W (x⊥)W †(y⊥)

〉
m

= e−g
2n0CRL[γ(0)−γ(x⊥−y⊥)]
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Momentum broadening 3/3

I The parameter q̂ : under the harmonic approximation
g2CR(γ(0)− γ(r⊥)) ' 1

2 q̂r
2
⊥

I Then dPbroad (k⊥|p⊥)
dk⊥

= 1
πq̂L exp

(
− (k⊥−p⊥)2

q̂L

)

I Physical interpretation given by the average
transverse momentum squared acquired by collisions
with the medium during a time ∆t.

〈k2
⊥〉 = q̂∆t
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