

Production of muons from open heavyflavour hadron decays in heavy-ion collisions with ALICE

Zuman Zhang for the ALICE Collaboration

Institute of Particle Physics, CCNU, Wuhan, China Key Laboratory of Quark & Lepton Physics, MoE, China Laboratoire de Physique de Clermont, CNRS/IN2P3, Clermont-Ferrand, France

Outline

- Physics motivation
- Open heavy-flavour measurements with the ALICE muon spectrometer
- Analysis procedure
- Results
- Summary and outlook

QGP-France, 2-5 July 2018, Etretat, France

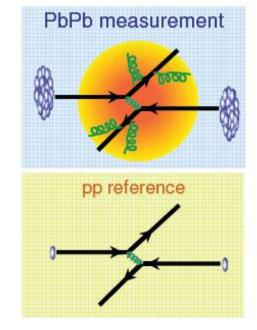
Physics motivations (2/2)

Charm and beauty quarks: sensitive probes of the medium properties

Open heavy flavours in nucleus-nucleus (AA) collisions probe In-medium parton energy loss: gluon radiation and elastic collisions Heavy-quark participation in the collective expansion

Also needed:

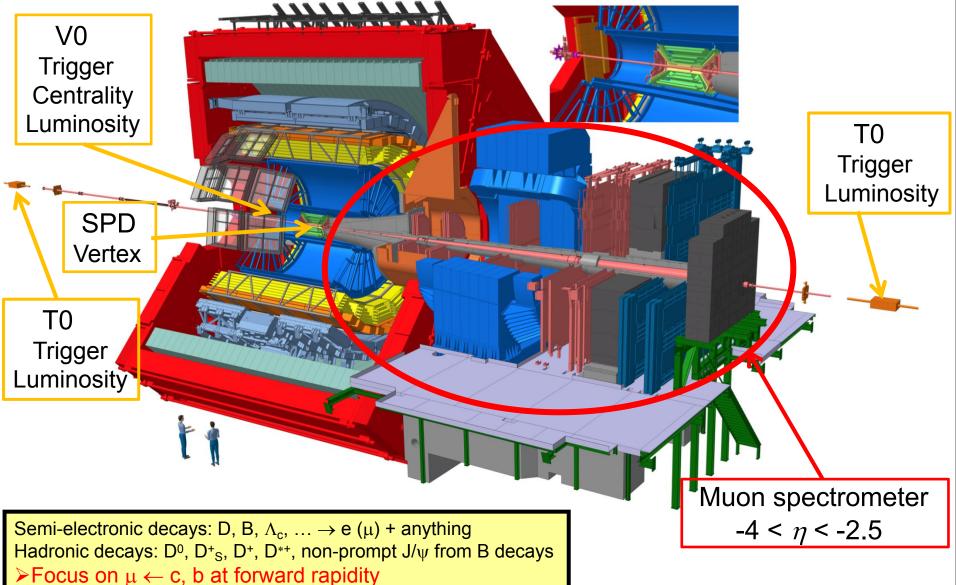
proton-proton (pp) collisions reference, tests of pQCD-based predictions


pA collisions

reference, cold nuclear matter effects

Observable

 \checkmark The nuclear modification factor, R_{AA} , sensitive to the medium effects


$$R_{AA}(p_{T}) = \frac{1}{\langle T_{AA} \rangle} \times \frac{dN_{AA}/dp_{T}}{d\sigma_{pp}/dp_{T}} = \frac{QCD \text{ Medium}}{QCD \text{ Vacuum}}$$

- ✓ If no nuclear effects: $R_{AA} = 1$
- Effects of the hot and dense medium \checkmark produced in the collision breakup binary scaling: $R_{AA} \neq 1$

ALICE Run-2 setup

Data samples and muon selections

	pp collisions at √s = 5.02 TeV	Xe-Xe collisions at √s _{NN} = 5.44 TeV	Pb-Pb collisions at √s _{NN} = 5.02 TeV		
Data	LHC15n, collected in 2015	LHC17n, collected in 2017	LHC15o, collected in 2015		
L _{int}	MSL(MSH): $\approx 53.7 (104.4) \text{ nb}^{-1}$	MSL: $\approx 0.34~\mu b^{\text{-1}}$	MSL(MSH): \approx 21.9 (202.3) $\mu b^{\text{-1}}$		

MSL (MSH) triggers: p_T threshold ~ 0.5, 1 (4.2) GeV/c

Muon track selection

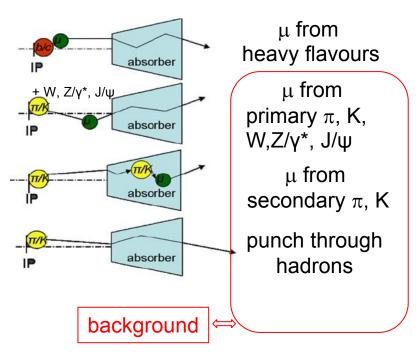
Acceptance & geometrical cuts

select tracks in the spectrometer acceptance

• p_T cut at 2 GeV/c

reject μ from secondary π , K

Muon tracking tracks matched with muon trigger tracks


reject hadrons crossing the front absorber

p×DCA (Dist. of Closest Approach) in 6σ reject beam-gas interactions & particles produced in the absorber

$\mu^{\pm} \leftarrow b, c \text{ studies}$


Remaining background

- $\mu \leftarrow \text{primary } \pi, \text{ K decays (main contribution at low } p_T)$
- $\mu \leftarrow W, Z/\gamma^*$ decays (main contribution at high p_T)
- $\mu \leftarrow J/\psi$ decays (dominates at $p_T \sim 5 \text{ GeV/}c$)

Analysis procedure in pp collisions

Get inclusive muons with muon-triggered data, after muon event and track selection. Then normalize inclusive muons to minimum-bias events and apply acceptance x efficiency correction

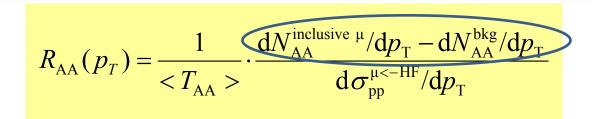
□ Background: $\mu \leftarrow \pi/K$ (dominates at low p_T , max. ~40% at 2 GeV/*c*)

- ✓ Inputs: π /K spectra at mid-rapidity at 5.02 TeV, extrapolated to higher p_T via power-law fit
- ✓ Then, get π/K spectra in 4π with p_T -dependent rapidity shape in Monte-Carlo via:

$$\frac{1}{N_{\rm ev}} \frac{d^2 N_{\rm pp}^{\rm K/\pi}}{dp_{\rm T} dy} = \frac{1}{N_{\rm ev}} \frac{dN_{\rm pp}^{\rm K/\pi}}{dp_{\rm T}} |_{|y| < 0.8} \times F(p_{\rm T}, y)$$

✓ Produce the π/K decay muon background in Monte-Carlo with fast simulation with parametrized muon front absorber response

□ Background: $\mu \leftarrow W$, Z/ γ^* (dominates at high p_T , max. ~13% in [18,20] GeV/*c*)


✓ Obtained from pp collisions by (POWHEG) simulation with CT10 PDF

□ Background: $\mu \leftarrow J/\psi$ (dominates at $p_T \sim 5$ GeV/*c*, small compared to $\mu \leftarrow \pi/K$)

✓ Use J/ ψ extrapolated p_T and y distributions as inputs, convert J/ ψ spectra to muons with fast simulation, max. ~4% contribution at p_T ~ 5 GeV/c

Analysis procedure in heavy-ion collisions

Get inclusive muons with muon-triggered data, after muon event and track selection. Then normalize inclusive muons to minimum-bias events and apply acceptance x efficiency correction

□ Background: $\mu \leftarrow \pi/K$ (dominates at low p_T)

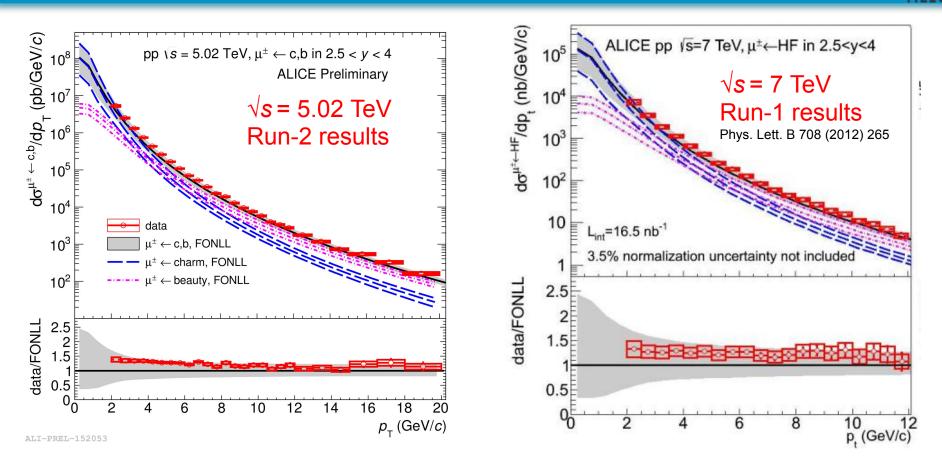
- ✓ Inputs: π/K spectra at mid-rapidity, extrapolated to higher p_T
- ✓ Then, get π/K spectra in 4π with p_T -dependent rapidity shape in Monte-Carlo via:

$$\frac{\mathrm{d}^{2} N_{\mathrm{AA}}^{\mathrm{K/\pi}}}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} y} = n_{\mathrm{y}} \times R_{\mathrm{AA}} \times F(p_{\mathrm{T}}, y) \times \frac{\mathrm{d} N_{\mathrm{pp}}^{\mathrm{K/\pi}}}{\mathrm{d} p_{\mathrm{T}}} |_{|y|<0.8}$$
$$= n_{\mathrm{y}} \times F(p_{\mathrm{T}}, y) \times \frac{\mathrm{d} N_{\mathrm{AA}}^{\mathrm{K/\pi}}}{\mathrm{d} p_{\mathrm{T}}} |_{|y|<0.8}$$

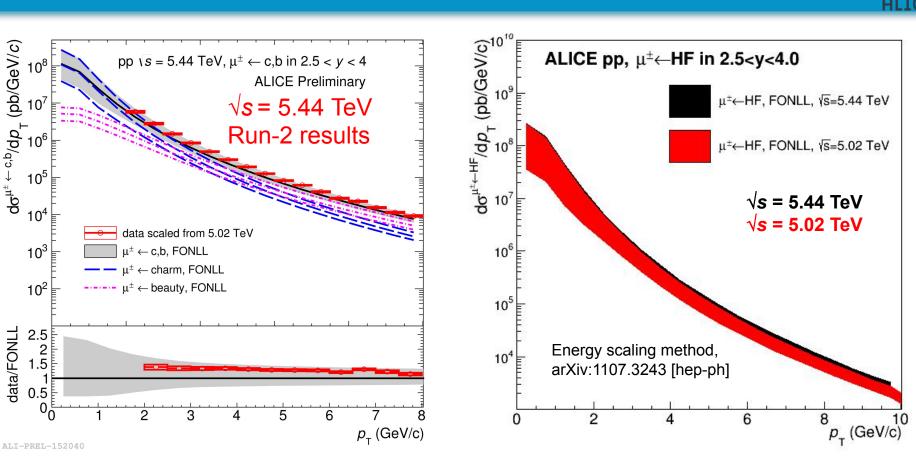
 n_y (= 1): quenching factor, systematic uncertainty varying n_y within 0.5-1.5

 $\vec{F}(p_T, y)$: p_T -dependent y extrapolation factor, from pp simulations with Monte-Carlo event generators

✓ Produce the π/K decay muon background in Monte-Carlo with fast simulation with parametrized muon front absorber response


□ Background: μ←J/ψ (dominates at p_T ~ 5 GeV/c, small compared to μ←π/K)
 □ Background: μ←W, Z/γ* (dominates at high p_T, obtained from pp, pn, np and nn collisions by (POWHEG) simulation)

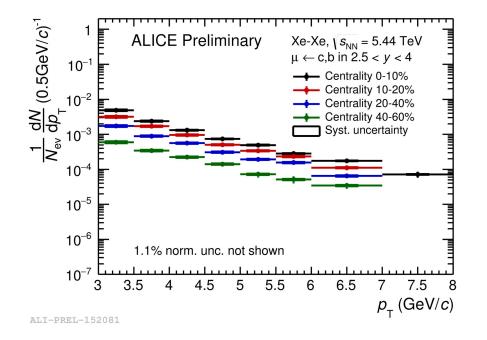
pp results: differential production cross sections of muons from heavy-flavour hadron decays


Run:282016 Timestamp:2017-11-11 21:38:31(UTC) Colliding system:p-p Energy: 5.02 TeV

p_{T} -differential production cross section (1/2)

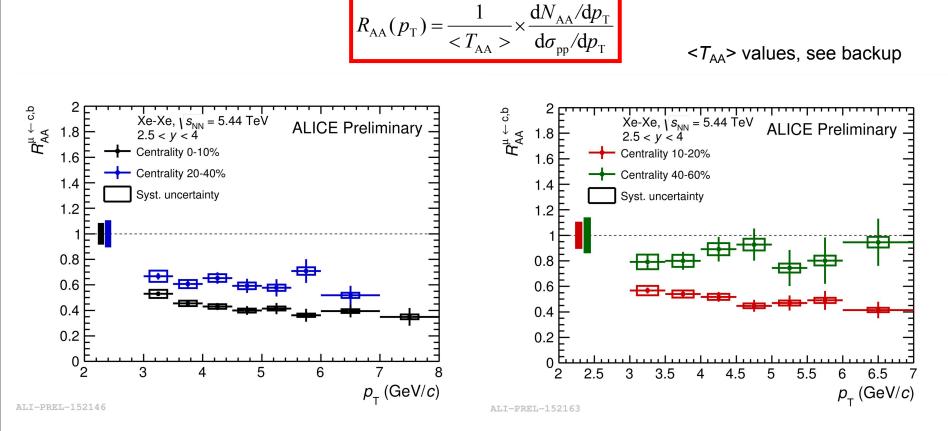
- Measurement over a wide p_T range: 2 < p_T < 20 GeV/c in pp collisions at 5.02 TeV
 Data in agreement with FONL predictions within uncertainties although at the upper edge of FONLL predictions
- **D** Quite precise measurement, strong constraints on pQCD-based calculations
- **The reference** for Pb-Pb measurements at $\sqrt{s_{NN}}$ = 5.02 TeV
- Systematic uncertainties reduced by about a factor two, compared to Run-1 results

p_{T} -differential production cross section (2/2)


- □ √s = 5.02 TeV measurement in 3 < p_T < 8 GeV/c scaled to √s = 5.44 TeV with FONLL
 □ Data in agreement with FONL predictions, strong constraints on pQCD-based calculations
- **D** The reference for Xe-Xe measurements at $\sqrt{s_{NN}} = 5.44$ TeV

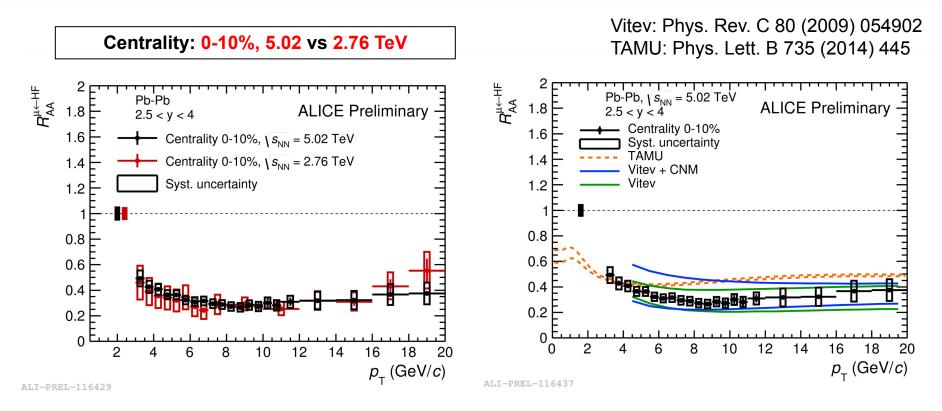
Xe-Xe and Pb-Pb results: nuclear modification factor vs p_{T} and centrality of muons from heavy-flavour hadron decays

Run:280235 Timestamp:2017-10-13 00:31:48(UTC) Colliding system:Xe-Xe Energy: 5.44 TeV

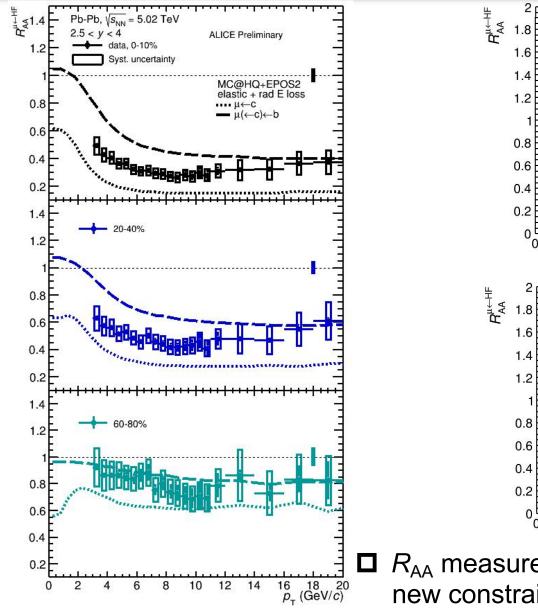

Normalized p_{T} -differential yields in Xe-Xe collisions

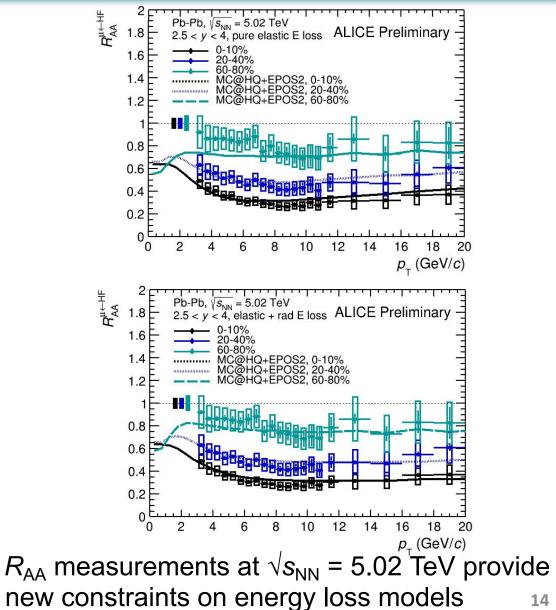
- □ Measurement in $3 < p_T < 8$ GeV/*c* for 10% most central collisions ($3 < p_T < 7$ GeV/*c* for 10-20%, 20-40%, 40-60%) with muon-triggered events
- □ Increasing normalized p_{T} -differential yields from peripheral to central collisions

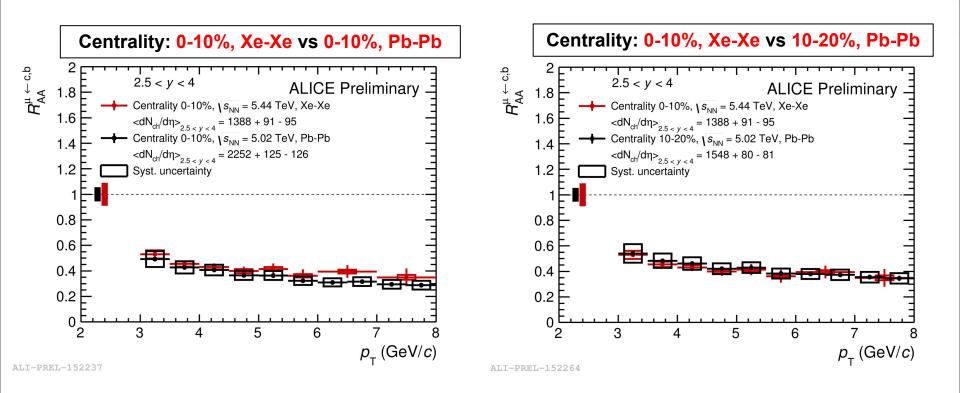
p_{T} -differential R_{AA} of $\mu^{\pm} \leftarrow b$, c



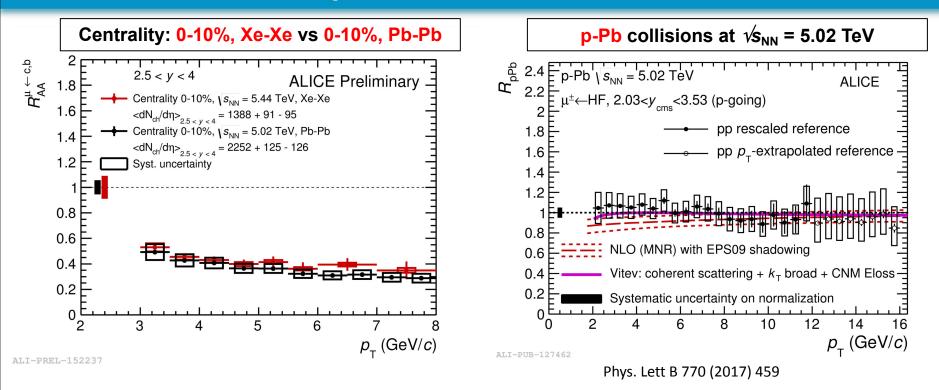
- \square p_T -differential R_{AA} of heavy-flavour decay muons in different centrality classes
- □ Increasing suppression from peripheral to central collisions


p_T -differential R_{AA} of $\mu^{\pm} \leftarrow b$, c in Pb-Pb collisions

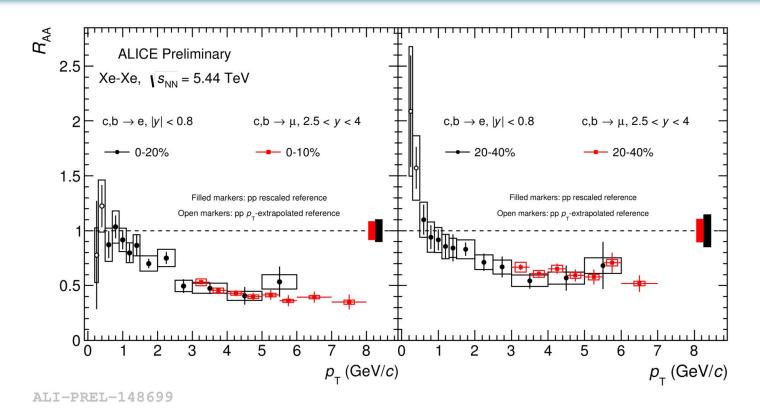



- Similar suppression at 5.02 TeV and at 2.76 TeV for central collisions within uncertainties
- **D** Better precision in Run 2 ($\sqrt{s_{NN}}$ = 5.02 TeV)
- **D** R_{AA} measurements at $\sqrt{s_{NN}}$ = 5.02 TeV provide new constraints on energy loss models

p_{T} -differential R_{AA} of $\mu^{\pm} \leftarrow b$ in Pb-Pb ALICE collisions: comparison with MC@HQ + EPOS2

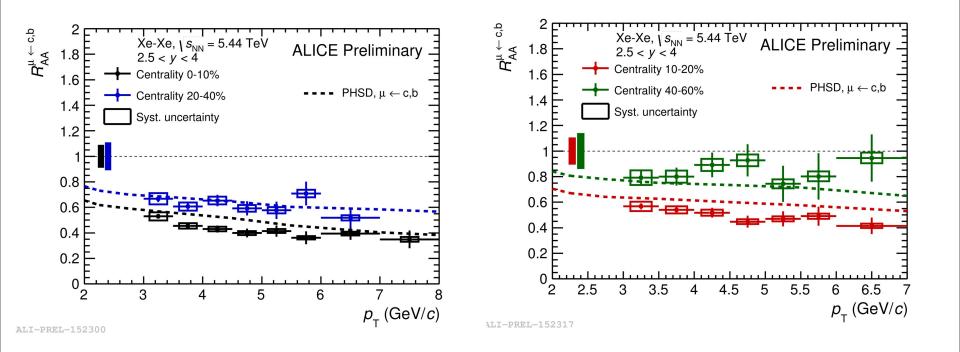


R_{AA} : $\sqrt{s_{NN}} = 5.44$ TeV in Xe-Xe collisions vs $\sqrt{s_{NN}} = 5.02$ TeV in Pb-Pb collisions


Similar heavy-flavour hadron decay muon R_{AA} observed in 0-10% Xe-Xe and 10-20% Pb-Pb collisions at similar charged-particle multiplicity
 ✓ Possible interplay of geometry and path-length dependence

Comparison of Xe-Xe and Pb-Pb results with p-Pb measurements

□ R_{pPb}: consistent with unity within uncertainties over the whole p_T range
 □ The suppression observed in central Xe-Xe and Pb-Pb collisions results from final-state effects related to parton energy loss


Comparison with measurements of e ←c,b (mid-rapidity)

Compatible results within uncertainties for heavy-flavour decay electrons (|y| < 0.8) and heavy-flavour decay muons (2.5 < y < 4) *R*_{AA} in 0-10% and 20-40% centrality classes
 Indication that heavy quarks suffer a strong interaction in a wide rapidity internal

Comparison with model calculations

 Centrality: 20-40%, models describe the measured R_{AA} within uncertainties; Centrality: 10-20%, models overestimate the measured R_{AA}
 R_{AA} measurements have the potential to constrain energy loss models

PHSD model: arXiv:1803.02698 and Phys.Rev. C96 (2017) no.1, 014905

Conclusion and outlooks

Conclusion

□ Measurements in pp collisions, over a wider p_T range, extended to $p_T = 20$ GeV/c

- Precise reference for the R_{AA} computation
- Described by pQCD-based calculations (FONLL)

□ Measurements in Xe-Xe collisions, new system, w.r.t Pb-Pb collisions

- Strong suppression, a factor ~3 for $6 < p_T < 8 \text{ GeV/}c$ in 0-10% centrality class
- The measured suppression is due to final-state effects (R_{pPb} ~ 1)
- Results compatible within uncertainties with those obtained at vs_{NN} = 5.02 TeV Pb-Pb collisions and with mid-rapidity electrons from heavy-flavour hadron decays
- *R*_{AA} measurements have the potential to constrain energy loss models

More to come soon

- Elliptic flow, v_2 , measurement in Run-2
- More differential measurements with the next Pb-Pb run scheduled end of 2018

Thank you for your attention

Physics motivations (2/2)

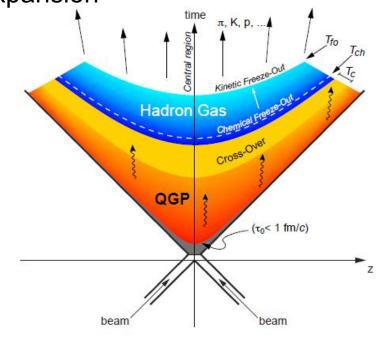
Charm and beauty quarks: sensitive probes of the medium properties

Open heavy flavours in nucleus-nucleus (A-A) collisions probe

- □ In-medium parton energy loss
- Heavy-quark participation in the collective expansion

Also needed:

proton-proton (pp) collisions reference, tests of pQCD-based predictions

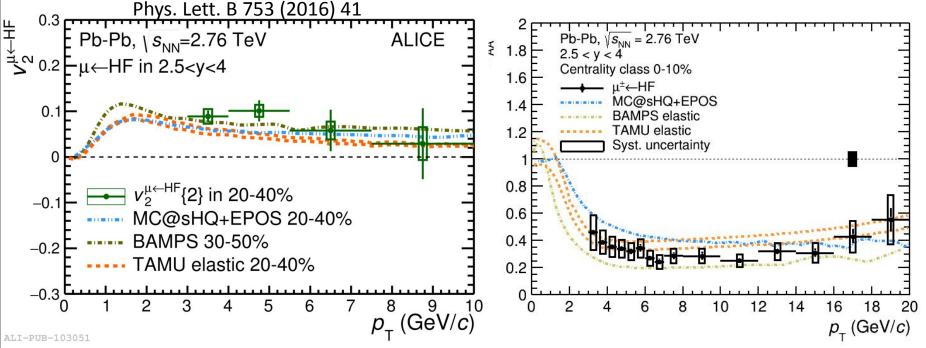

p-A collisions

reference, cold nuclear matter effects

Observable

✓ The nuclear modification factor, R_{AA} , sensitive to the medium effects

 $R_{AA}(p_{T}) = \frac{1}{\langle T_{AA} \rangle} \times \frac{dN_{AA}/dp_{T}}{d\sigma_{pp}/dp_{T}} = \frac{QCD \text{ Medium}}{QCD \text{ Vacuum}}$



✓ If no nuclear effects: $R_{AA} = 1$

Run-2 provides measurements of heavy-flavour hadron decay muons in a wide p_T range with improved precision which bring new constraints on in-medium energy loss

Comparison with models

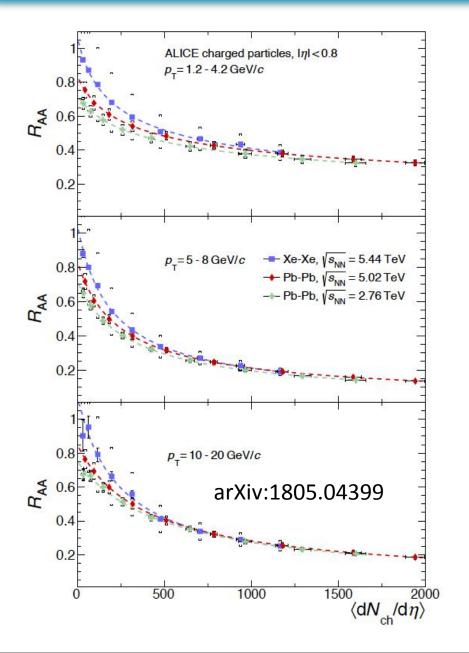
 \Box Elliptic flow v_2 : complementary measurement to R_{AA} sensitive to:

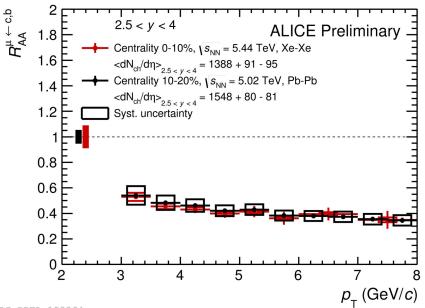

- Low *p*_T: collective motion
- High p_{T} : path-length dependence of parton energy loss
- **Positive** v_2 measured with a significance > 3σ for $3 < p_T < 5$ GeV/*c* in 20-40%
- Confirmation of significant interaction of heavy quarks with the medium
- □ Simultaneous description of R_{AA} in central collisions and v_2 in semi-central collisions is challenging

 \Box R_{AA} and v_2 measurements starts to provide constraints on energy loss models

Similar picture for heavy-flavour decay electrons and D mesons

Analysis strategy in Pb-Pb collisions (2/5) Muons from K/ π decays




Get K/π spectra at mid-rapidity in Pb-Pb collisions at 5.02 TeV and do p_T extapolation
 ✓ p_T extrapolation with power-law fit

 (1) p_T < 12 GeV/c : Gaussian fit with gRandom->Gaus(µ,σ)
 µ: center value of K/π spectra; σ: stat. and syst. uncertainties of data
 (2) p_T > 12 GeV/c
 µ and σ from K/π spectra in p_T-extrapolated intervals

R_{AA} in Xe-Xe collisions at 5.44 TeV

ALI-PREL-152264

T_{AA} values in Xe-Xe and Pb-Pb collisions

Xe-Xe

Cent (%)	Npart	RMS	Sys	Ncoll	RMS	Sys	TAA	RMS	Sys
0-10%	221.2	19	2.2	843.1	1.4e+02	70	12.33	2	1
10-20 %	164.8	18	2.8	510.6	86	51	7.465	1.3	0.74
20-30 %	118.4	14	3.8	302.8	58	40	4.426	0.85	0.59
30-40 %	82.21	11	3.9	171.3	38	27	2.505	0.56	0.4
40-50 %	54.56	8.8	3.6	91.81	24	16	1.342	0.35	0.24
50-60 %	34.06	6.5	3	46.04	14	8.8	0.6731	0.2	0.13
<mark>60-70 %</mark>	19.72	4.7	2.1	21.65	7.6	4.1	0.3166	0.11	0.061
70-80 %	10.5	3.1	1.1	9.515	3.9	1.6	0.1391	0.056	0.024
<mark>80-90 %</mark>	5.127	1.9	0.46	3.838	1.9	0.5	0.05611	0.028	0.0074
<mark>90-100 %</mark>	2.488	0.8	0.12	1.449	0.73	0.1	0.02118	0.011	0.0015

Cent	bmin [fm]	bmax [fm]	Npart	RMS	Sys	Ncoll	RMS	Sys	TAA	RMS	Sys
00 - 10 %	0.00	4.96	359	31.2	3.0	1636	246	170	23.4	3.51	0.78
10 - 20 %	4.96	7.01	263	27.1	3.6	1001	154	97	14.3	2.2	0.46
20 - 30 %	7.01	8.59	188	22.5	3.0	601	106	54	8.59	1.52	0.27
30 - 40 %	8.59	9.92	131	19.1	2.3	344	74.7	29	4.92	1.07	0.16
40 - 50 %	9.92	11.1	86.3	16.3	1.7	183	50.8	14	2.61	0.726	0.1
50 - <mark>60 %</mark>	11.1	12.1	53. <mark>6</mark>	13.6	1.2	89.8	32.4	6	1.28	0.463	0.063
60 - <mark>70 %</mark>	12.1	13.1	30.4	10.8	0.76	39.8	19.1	2.4	0.569	0.273	0.032
70 - 80 %	13.1	14.0	15.6	7.83	0.45	16.2	10.5	0.92	0.232	0.15	0.015
80 - <mark>9</mark> 0 %	14.0	15.0	7.59	4.89	0.19	6.57	5.27	0.3	0.0923	0.0753	0.007
90 - 100 %	15.0	19.6	3.77	2.5	0.079	2.66	2.41	0.088	0.0378	0.0344	0.0033

Pb-Pb