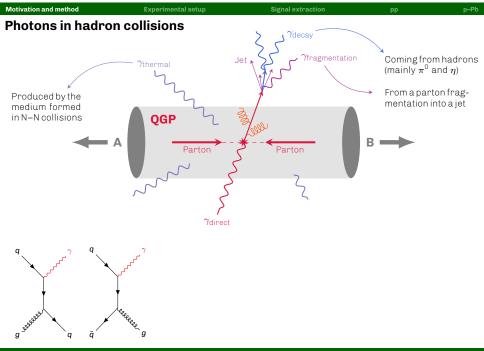
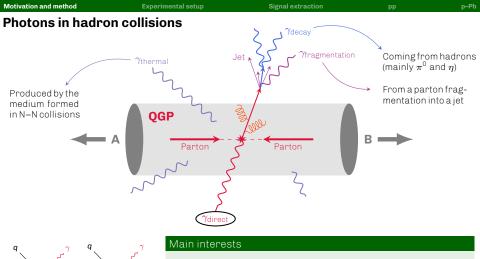

Isolated photon measurement in pp and p–Pb collisions at LHC with the ALICE Experiment


Erwann Masson


Laboratoire Subatech, Nantes

Rencontres QGP France 2018

- \blacktriangleright Calibrated energy reference for parton energy loss studies through $\gamma_{\rm direct}\text{-}hadron$ correlations
 - Key observable to test pQCD and put new constraints on theory
 - Measurement in p-Pb collisions → address cold nuclear effects by comparing with pp results and have a reference for Pb-Pb measurement and studying the QGP

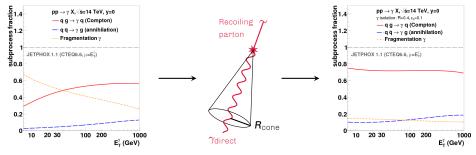
feee fee

Jagagaga

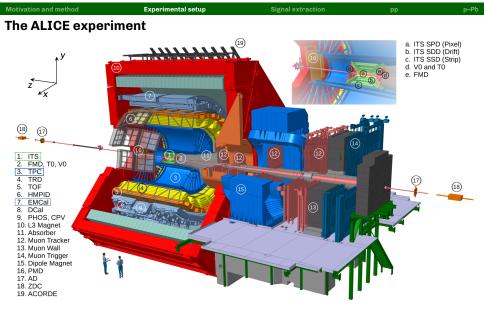
Motivation and method	Experimental setup	Signal extraction	рр	p–Pb
Photon isolation				

• γ_{direct} emitted back to the other hard products \rightarrow selection using an **isolation method**

Motivation and method	Experimental setup	Signal extraction	рр	p–Pb
Photon isolation				


• γ_{direct} emitted back to the other hard products \rightarrow selection using an **isolation method**

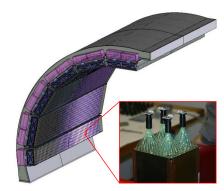
Isolated photons


► Isolation cone of radius R_{cone} defined around a candidate photon at $(\eta_{\gamma}, \varphi_{\gamma})$

$${\sf R}_{ ext{cone}} = \sqrt{(\eta - \eta_\gamma)^2 + (arphi - arphi_\gamma)^2}$$

Photon declared isolated if p^{iso}_T < p^{max}_T (typical values → R_{cone} = 0.4, p^{max}_T = 2 GeV/c)

R. Ichou et al., Phys. Rev. D 82, 014015 (2010)


- ► ITS/TPC → primary vertex determination + charged particle tracking and identification
- ► EMCal \rightarrow electromagnetic particle measurement (e.g. γ and electrons) + γ /jet trigger

p–Pk

EMCal, the ALICE ElectroMagnetic Calorimeter

Specifications

- ▶ 12 supermodules → 3072 modules → 12288 cells with a 6 × 6 cm² area
- ► Each cell → 153 lead/scintillator alternating layers (24.6 cm thick in total)
- Energy/position resolutions → 4.8%/E ⊕ 11.3%/√E ⊕ 1.7% and 5.3 mm/√E ⊕ 1.5 mm
- Covers $|\eta_{\gamma}| <$ **0.67** and **107°** in azimuth (φ)
- Used as trigger detector (γ/jets)

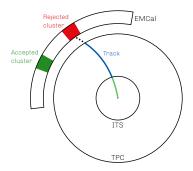


p–Pk

EMCal, the ALICE ElectroMagnetic Calorimeter

Specifications

- ▶ 12 supermodules → 3072 modules → 12288 cells with a 6 × 6 cm² area
- ► Each cell → 153 lead/scintillator alternating layers (24.6 cm thick in total)
- Energy/position resolutions → 4.8%/E ⊕ 11.3%/√E ⊕ 1.7% and 5.3 mm/√E ⊕ 1.5 mm
- Covers |η_γ| < 0.67 and 107° in azimuth (φ)
- Used as trigger detector (γ/jets)



Photon selection

Neutral clusters (charged particle veto)

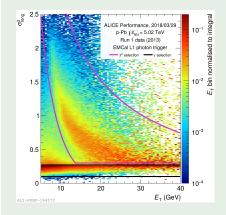
 Candidate clusters must not match a track spatially

$$\Delta \eta = |\eta_{\text{clus}} - \eta_{\text{track}}| > 0.02$$
$$\Delta \varphi = |\varphi_{\text{clus}} - \varphi_{\text{track}}| > 0.03$$

Photon selection

Neutral clusters (charged particle veto)

 Candidate clusters must not match a track spatially


$$\Delta \eta = |\eta_{\rm clus} - \eta_{\rm track}| > 0.02$$

$$\Delta \varphi = |\varphi_{\text{clus}} - \varphi_{\text{track}}| > 0.03$$

Candidate photons (shower shape cuts)

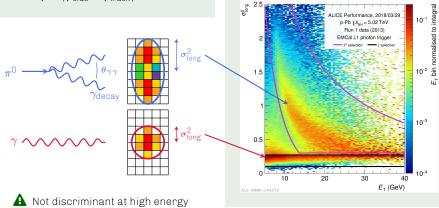
Clusters shower shape σ²_{long} is used to reject the γ_{decay} component

$$0.1 < \sigma_{
m long}^2 < \left(\sigma_{
m long}^2
ight)_{
m max}$$

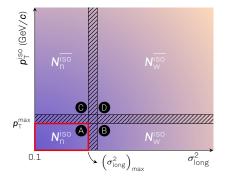
Photon selection

Neutral clusters (charged particle veto)

 Candidate clusters must not match a track spatially

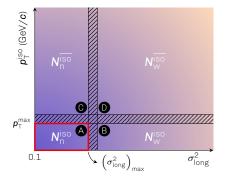

$$\Delta \eta = |\eta_{
m clus} - \eta_{
m track}| > 0.02$$

$$\Delta \varphi = |\varphi_{\text{clus}} - \varphi_{\text{track}}| > 0.03$$


Candidate photons (shower shape cuts)

Clusters shower shape σ²_{long} is used to reject the γ_{decay} component

$$0.1 < \sigma_{
m long}^2 < \left(\sigma_{
m long}^2
ight)_{
m max}$$

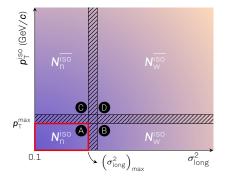

Signal extraction

The ABCD method: two strong assumptions (ATLAS Coll., Phys. Rev. D 83, 052005 (2011))

► N = S + B = γ_{direct} signal + background

Signal extraction

The ABCD method: two strong assumptions (ATLAS Coll., Phys. Rev. D 83, 052005 (2011))


- ► N = S + B = γ_{direct} signal + background
- Only background clusters in B, G and D

 $(N_{\rm W}^{\rm iso}, N_{\rm n}^{\rm \overline{iso}}, N_{\rm W}^{\rm \overline{iso}}) \equiv (B_{\rm W}^{\rm iso}, B_{\rm n}^{\rm \overline{iso}}, B_{\rm W}^{\rm \overline{iso}})$

- ► Background isolation fraction equal in narrow (▲, ⓒ) and wide (⊕, ○) σ_{long}^2 regions $B_n^{lso}/B_n^{lso} = B_{W}^{lso}/B_W^{lso}$
- ▶ Part of signal region (A) clusters induced by $\gamma_{\text{direct}} \rightarrow \text{purity}$ of the N_n^{iso} sample

$$\mathbb{P} = \mathbf{S}_{n}^{iso} / \mathbf{N}_{n}^{iso} = 1 - \frac{\mathbf{B}_{n}^{iso}}{\mathbf{N}_{n}^{iso}}$$

Signal extraction

The ABCD method: two strong assumptions (ATLAS Coll., Phys. Rev. D 83, 052005 (2011))

- $N = S + B = \gamma_{direct}$ signal + background
- Only background clusters in B, G and D

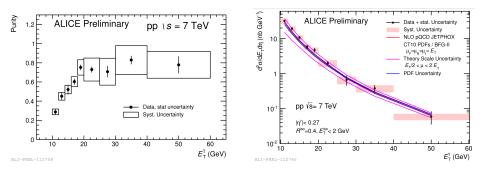
 $(N_{\mathrm{W}}^{\mathrm{iso}}, N_{\mathrm{n}}^{\overline{\mathrm{iso}}}, N_{\mathrm{W}}^{\overline{\mathrm{iso}}}) \equiv (B_{\mathrm{W}}^{\mathrm{iso}}, B_{\mathrm{n}}^{\overline{\mathrm{iso}}}, B_{\mathrm{W}}^{\overline{\mathrm{iso}}})$

- ► Background isolation fraction equal in narrow (▲, ⓒ) and wide (⊕, ○) σ_{long}^2 regions $B_n^{lso}/B_n^{lso} = B_{W}^{lso}/B_W^{lso}$
- ▶ Part of **signal region (A)** clusters induced by $\gamma_{\text{direct}} \rightarrow \textbf{purity}$ of the **N**^{iso} sample

$$\mathbb{P} = \boldsymbol{S}_n^{iso} / \boldsymbol{N}_n^{iso} = 1 - \frac{\boldsymbol{B}_n^{iso}}{\boldsymbol{N}_n^{iso}}$$

Background B^{iso} estimated with data and corrected with simulation

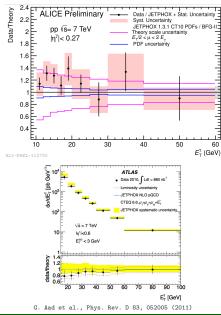
$$\mathbb{P}_{\text{corr}} = 1 - \left(\frac{\boldsymbol{B}_{n}^{\text{iso}} \times \boldsymbol{N}_{w}^{\text{iso}}}{\boldsymbol{N}_{w}^{\text{iso}} \times \boldsymbol{N}_{n}^{\text{iso}}} \right)_{\text{simu}} \times \left(\frac{\boldsymbol{N}_{w}^{\text{iso}} \times \boldsymbol{N}_{n}^{\text{iso}}}{\boldsymbol{N}_{w}^{\text{iso}} \times \boldsymbol{N}_{n}^{\text{iso}}} \right)_{\text{data}}$$

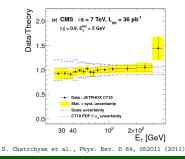

p-Pb

pp

Isolated photons in pp collisions at $\sqrt{s} =$ 7 TeV

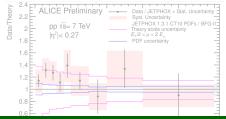
Specifications


- ▶ 2011 datasets, EMCal Level-0 trigger at **5.5 GeV** \rightarrow **8.6** \times **10⁶ events**
- ► Integrated luminosity → L_{int} = 473 ± 22 (stat) ± 17 (syst) nb⁻¹


Good agreement between measurement and NLO predictions (Jetphox – PDF CT10, FF BFG2)

pp

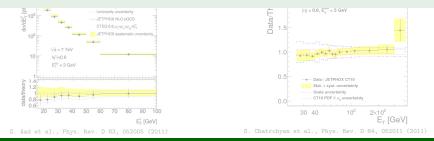
Isolated photons in pp collisions at $\sqrt{s} = 7 \text{ TeV}$


- Consistent with the ATLAS and CMS measurements in the overlapping E_T region (within uncertainties)
- Access to lower E_T isolated photons

Isolated photon measurement in pp and p-Pb collisions at LHC with the ALICE Experiment - Rencontres QGP France 2018

pp

Isolated photons in pp collisions at $\sqrt{s}=7\,\text{TeV}$

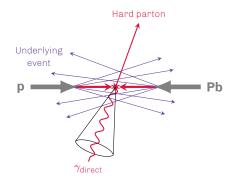


 Consistent with the ATLAS and CMS measurements in the overlapping E_T region (within uncertainties)

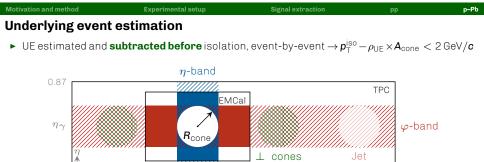
Access to lower E_T isolated photons

Ongoing improvements

- Correction for a crosstalk between EMCal cells (extensive studies by G. Conesa Balbastre)
- Re-evaluation of all systematic uncertainties



Isolated photon measurement in pp and p-Pb collisions at LHC with the ALICE Experiment - Rencontres QGP France 2018


Motivation and method	Experimental setup	Signal extraction	рр	p–Pb
Isolated photons	in p–Pb collisions at	$\sqrt{s_{ m NN}}=$ 5.02 TeV		
Specifications				
	1Cal Level-1 γ triggers at sity $\rightarrow \mathcal{L}_{int} = 4.64 \pm 0.41$		× 10⁶ events	

A Larger contribution from the **underlying event (UE)** in p–Pb than in pp collisions

► Underlying event → all processes but the hardest LO parton interaction

Cons

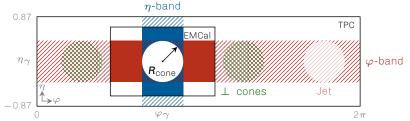
- Neutral part not measurable

 $\varphi \gamma$

-0.87

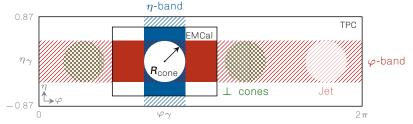
Pros

- Far from the isolation cone


- Can be crosschecked with ALICE PHOS

Method

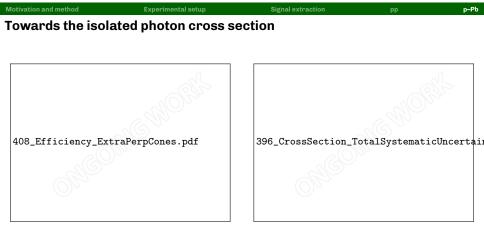
⊥ cones


 2π

Method	Pros	Cons
⊥ cones	– Far from the isolation cone – Can be crosschecked with ALICE PHOS	– Neutral part not measurable
η -band	- Neutral and charged parts both measurable	- Affected by a hard contribution from cone

Method	Pros	Cons
⊥ cones	– Far from the isolation cone – Can be crosschecked with ALICE PHOS	– Neutral part not measurable
η -band	- Neutral and charged parts both measurable	- Affected by a hard contribution from cone
arphi-band	– Neutral and charged parts both measurable	 Affected by a hard contribution from cone Possibly sensitive to the opposite jet

► Charged UE measurement in perpendicular cones then "neutral + charged" extrapolation → isolation using neutral + charged particles


- Purity from ~ 30% to ~ 70% over the probed photon energy range → as expected, lower contamination (i.e. better purity) at high energy
- Three times more isolated photons thanks to the fiducial cut enlargement (implemented since my last talk at QGP France)

p-Pb

Towards the isolated photon cross section

► Efficiency $\varepsilon \rightarrow$ correction for photon **reconstruction/identification/isolation**

- Efficiency $\varepsilon \rightarrow$ correction for photon **reconstruction/identification/isolation**
- Preliminary systematic uncertainty evaluation → from ~ 6% to ~ 24% on average (ongoing refinement)

p-Pb

Isolated photon cross section in p–Pb collisions at $\sqrt{s_{\text{NN}}}=5.02\,\text{TeV}$

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\mathbf{E}_{\mathrm{T}}\,\mathrm{d}\eta} = \frac{\mathbf{N}_{\mathrm{ev}}\times\mathbb{P}_{\mathrm{corr}}}{\mathcal{L}_{\mathrm{int}}\times\varepsilon}\times\frac{\mathrm{d}^2\mathbf{N}}{\mathbf{N}_{\mathrm{ev}}\,\mathrm{d}\mathbf{E}_{\mathrm{T}}\,\mathrm{d}\eta}$$

- ▶ pp-equivalent differential cross section \rightarrow p-Pb γ_{iso} yield scaled by the **nuclear over**lap factor $\langle T_{pA} \rangle$
- Comparison with Jetphox pQCD calculations
 - PDF CT10, nPDF EPS09, FF BFG2 (nPDF uncertainty → HKN07, nDS)
 - Scales → µ_R = µ_f = µ_F = E_T (scale uncertainty → half/double)
- ► Good agreement between data and theory

n–Pt

Isolated photon cross section in p–Pb collisions at $\sqrt{s_{\text{NN}}}=5.02\,\text{TeV}$

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\mathbf{E}_{\mathrm{T}}\,\mathrm{d}\eta} = \frac{\mathbf{N}_{\mathrm{ev}}\times\mathbb{P}_{\mathrm{corr}}}{\mathcal{L}_{\mathrm{int}}\times\varepsilon}\times\frac{\mathrm{d}^2\mathbf{N}}{\mathbf{N}_{\mathrm{ev}}\,\mathrm{d}\mathbf{E}_{\mathrm{T}}\,\mathrm{d}\eta}$$

- ▶ pp-equivalent differential cross section \rightarrow p-Pb γ_{iso} yield scaled by the **nuclear over**lap factor $\langle T_{pA} \rangle$
- Comparison with Jetphox pQCD calculations
 - PDF CT10, nPDF EPS09, FF BFG2 (nPDF uncertainty → HKN07, nDS)
 - Scales → µ_R = µ_f = µ_F = E_T (scale uncertainty → half/double)
- ► Good agreement between data and theory

Ongoing improvements

Final computation of all systematic uncertainties

Conclusions and outlook

Measuring photons in hadron collisions

- ► Photons **not affected** by the QCD medium → initial information on collision dynamics
- ► Test pQCD, have an energy reference for parton energy loss

Conclusions and outlook

Measuring photons in hadron collisions

- ► Photons not affected by the QCD medium → initial information on collision dynamics
- ► Test pQCD, have an energy reference for parton energy loss

Isolated photons in ALICE, status and outlook

- ► Cross section measured in pp and p-Pb collisions with ALICE from 10 GeV to 60 GeV → consistent with ATLAS and CMS (pp) + access to lower photon energies
- ► Final corrections and crosschecks before publication
- Results internally documented (ALICE analysis notes) and work presented in conferences (Quark Matter 2017 and 2018)
- Further outlook → compare p-Pb to pp through a nuclear modification factor (R_{pA}) + with inclusive direct photon measurements in ALICE (low energies)

Conclusions and outlook

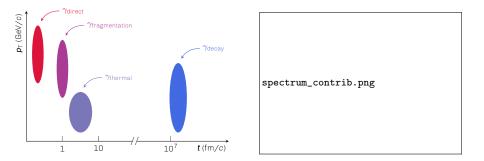
Measuring photons in hadron collisions

- ► Photons not affected by the QCD medium → initial information on collision dynamics
- ► Test pQCD, have an energy reference for parton energy loss

Isolated photons in ALICE, status and outlook

- ► Final corrections and crosschecks before publication
- Results internally documented (ALICE analysis notes) and work presented in conferences (Quark Matter 2017 and 2018)
- Further outlook → compare p-Pb to pp through a nuclear modification factor (R_{pA}) + with inclusive direct photon measurements in ALICE (low energies)

Merci pour votre attention !


Backup

Why study the γ_{direct} component?

• γ_{direct} produced early in hard processes and not affected by the traversed medium

 \rightarrow Calibrated energy reference for parton (q, g) energy loss studies (correlations)

► Crucial to study their contribution to the total γ population to extract the thermal component

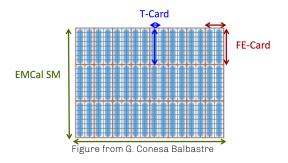
 γ_{direct} well described by perturbative QCD calculations → measuring them helps to test and
 constrain theory

Data selection

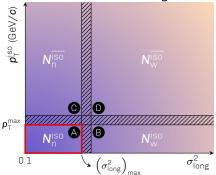
Event selection

- Interaction primary vertex → |z_v| < 10 cm</p>
- Events must have at least one track
- ▶ 1.3×10^{6} events (EG1) and 0.6×10^{6} events (EG2) kept

Cluster selection


- Clusterizer V1 with (seed, cell) = (300, 100) MeV
- ► Minimal number of cells per cluster → N_{cells/clus} ≥ 2
- Number of local maxima in a cluster → 1 ≤ NLM ≤ 2
- ► Distance (number of cells) to a bad channel → N_{DTBC} ≥ 2
- ► Cluster exoticity → 1 E_{cross}/E_{cell} > 0.97
- Cluster time $\rightarrow |t_{clus}| < 30 \, \text{ns}$
- ► Fiducial cut \rightarrow $|\eta| < 0.27$, $\varphi \in (104, 155)^{\circ}$ (pp) and $|\eta| < 0.52$, $\varphi \in (91, 170)^{\circ}$ (p-Pb)

Track selection


- ► Cluster-track matching → **TPC-only tracks** (kTPCOnlyTracks)
- ▶ Isolation \rightarrow hybrid tracks (kHybridTracks) with $p_T > 0.2 \text{ GeV}/c$

EMCal T-Card crosstalk

- ▶ 1 EMCal supermodule \rightarrow 36 FEE-Cards (4 × 8 cells in (η, φ) each)
- ▶ 1 FEE-Card \rightarrow 2 T-Cards (2 × 8 cells in (η, φ) each)
- It has been observed in the lab a crosstalk between cells in the same T-Card, affecting the cell timing and energy distributions → likely the cause of the effect on the shower shape broadening in data
- Additional energy in the cells neighboring the highest energy cell in cluster might broaden the photon clusters and symmetrize the shape for merged pi0 decay clusters

Signal extraction (p–Pb σ^2_{long} limits)

$\sigma^2_{\rm long}$ limit	10 - 12	12 - 16	16 - 18	18-60
narrow min	0.10	0.10	0.10	0.10
narrow max	0.40	0.35	0.32	0.30
wide min	0.60	0.45	0.35	0.33
wide max	2.10	1.95	1.85	1.83

- ► Isolation crit. (A, B) → p^{iso}_T < 2 GeV/c</p>
- ▶ Anti-isolation crit. ((), ()) → $p_{T}^{iso} > 3 \, \text{GeV}/c$

The ABCD method (Phys. Rev. D 83, 052005 (2011))

- Mainly signal region
 A = isolated narrow clusters (iso, n)
- Mainly background regions
 - **B** = isolated wide clusters (iso, w)
 - **O** = non-isolated narrow clusters (iso, n)
 - \mathbf{D} = non-isolated wide clusters (iso, w)

Particle quantities

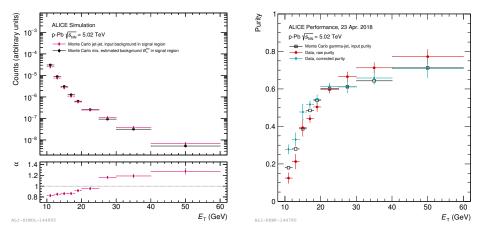
- ► S = γ_{direct} signal
- **B** = background (π^0 , η , their γ_{decay} , etc.)
- $N = S + B \rightarrow$ what is measured
- ▶ Part of region A clusters truly induced by $\gamma_{\rm direct} \rightarrow {\rm purity}$ of the $N_{\rm n}^{\rm iso}$ sample

$$\mathbb{P} = m{S}_n^{iso}/m{N}_n^{iso} = 1 - m{B}_n^{iso}/m{N}_n^{iso}$$

 Background B^{iso} estimated with data and corrected with MC

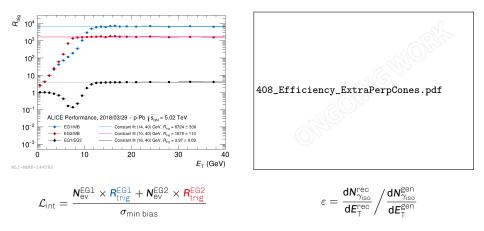
Isolated photon measurement in pp and p–Pb collisions at LHC with the ALICE Experiment – Rencontres QGP France 2018

Signal extraction and purity estimation

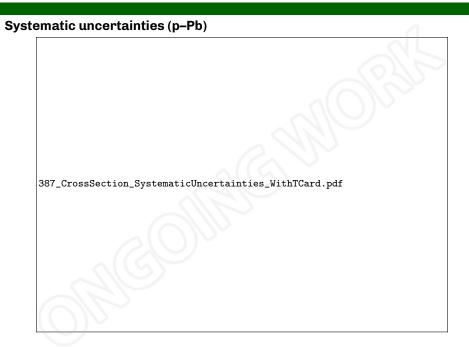

Data-driven background estimation in signal region A

$$\boldsymbol{B}_{n}^{\text{iso}} = \frac{\boldsymbol{N}_{w}^{\text{iso}} \times \boldsymbol{N}_{n}^{\text{iso}}}{\boldsymbol{N}_{w}^{\text{iso}}} \Rightarrow \mathbb{P} = 1 - \frac{\boldsymbol{B}_{n}^{\text{iso}}}{\boldsymbol{N}_{n}^{\text{iso}}} = 1 - \left(\frac{\boldsymbol{N}_{w}^{\text{iso}} \times \boldsymbol{N}_{n}^{\text{iso}}}{\boldsymbol{N}_{w}^{\text{iso}} \times \boldsymbol{N}_{n}^{\text{iso}}}\right)_{\text{data}}$$

- ▶ Possibly signal contamination in background regions (B), (e) and (D) and non-constant background isolation probability → purity must be corrected using MC simulations
- ► Jet-jet (JJ, **background**) + γ -jet (GJ, **signal**) \rightarrow mixed and used to compute a **correction factor** α


$$\alpha = \underbrace{\frac{\left(\mathbf{B}_{n}^{\text{iso}}\right)_{\text{JJ}}}{\left(\mathbf{B}_{n}^{\text{iso}}\right)_{\text{MC mix}}}}_{\text{estimated bkg.}} \Rightarrow \mathbb{P}_{\text{corr}} = 1 - \underbrace{\left(\frac{\mathbf{B}_{n}^{\text{iso}} \times \mathbf{N}_{w}^{\text{iso}}}{\mathbf{N}_{w}^{\text{iso}} \times \mathbf{N}_{n}^{\text{iso}}}\right)_{\text{MC}}}_{\alpha} \times \left(\frac{\mathbf{N}_{w}^{\text{iso}} \times \mathbf{N}_{n}^{\text{iso}}}{\mathbf{N}_{w}^{\text{iso}} \times \mathbf{N}_{n}^{\text{iso}}}\right)_{\text{data}}$$

Purity correction (p-Pb)



- α rises from lower to greater than unity \rightarrow raw purity \mathbb{P} is clearly **underestimated (overestimated) at low (high) photon** E_{T}
- ► Corrected estimated purity closer to "ideal purity" → mandatory step

Luminosity and global efficiency (p–Pb)

- σ_{min bias} measured with vdM scans ~ 2.1 b (JINST 9, P11003 (2014))
- Here → L_{int} = 4.64 ± 0.41 nb⁻¹ (syst. unc. obtained by multi-varying R_{trig} fit ranges)
- ► Correction for acceptance, reconstruction, identification and isolation → global efficiency

Systematic uncertainties (p-Pb)

387_CrossSection_SystematicUncertainties_WithTCard_Combined.pdf