The Initial Correlations of the Glasma EnergyMomentum Tensor

Pablo Guerrero Rodríguez ${ }^{a}$ with advisors:
 Javier L. Albacete ${ }^{a}$ and Cyrille Marquet ${ }^{b}$

${ }^{a}$ CAFPE and Departamento de Física Teórica y del Cosmos, Universidad de Granada ${ }^{b}$ Centre de Physique Théorique at École Polytechnique, Palaiseau, France

> Rencontres QGP
> July 2nd, 2018
> Étretat
arXiv:1807.????

Universidad
de Granada

Motivation and technical framework

The QCD phase space

- QCD behaves differently depending on conditions of temperature and baryon density
- Low temperature and densities: hadronic phase (confinement and spontaneously broken chiral symmetry)
- Lattice simulations indicate a transition at high temperature to a deconfined, chiral-symmetric phase: The QUARK-GLUON PLASMA

The QCD phase space

- This state of matter can be accessed in particle colliders through Heavy Ion Collision experiments

- Performed at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) and CERN's Large Hadron Collider (ALICE experiment)

Stages of a heavy ion collision

- After the collision, matter goes through different phases as it cools down
- In the last part, it reaches the hadronic phase, and this is how it appears in the detectors

Stages of a heavy ion collision

- There is a theoretical gap between the description of the early phase and the simulations of the expansion of the QGP
- Solid theoretical results are needed to mediate between both frameworks

Stages of a heavy ion collision

- There is a theoretical gap between the description of the early phase and the simulations of the expansion of the QGP
- Solid theoretical results are needed to mediate between both frameworks
- We provide a first-principles analytical calculation of:
$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle$
$\left\langle T^{\mu \nu}\left(x_{\perp}\right) T^{\mu \nu}\left(y_{\perp}\right)\right\rangle$
In the classical approximation (MV model)

Initial conditions: the Color-Glass Condensate

Highly Energetic Heavy Ion Collisions

- At high energies (or equivalently, low x) the partonic content of protons and neutrons is vastly dominated by a high density of gluons

Highly Energetic Heavy Ion Collisions

- At high energies (or equivalently, low x) the partonic content of protons and neutrons is vastly dominated by a high density of gluons
- Relativistic kinematics: at high energies,
 the nuclei appear almost two-dimensional in the laboratory frame due to Lorentz

contraction

Highly Energetic Heavy Ion Collisions

- At high energies (or equivalently, low x) the partonic content of protons and neutrons is vastly dominated by a high density of gluons
- Relativistic kinematics: at high energies,
 the nuclei appear almost two-dimensional in the laboratory frame due to Lorentz contraction

- QCD becomes non-linear and non-perturbative!

Color Glass Condensate: McLerran-Venugopalan model

- We use an approximation of QCD for high gluon densities where we replace the gluons with a classical field generated by the valence quarks

- Dynamics of the field described by Yang-Mills classical equations:

$$
\left[D_{\mu}, F^{\mu \nu}\right]=J^{\nu} \propto \rho(x)
$$

Color Glass Condensate: McLerran-Venugopalan model

- We use an approximation of QCD for high gluon densities where we replace the gluons with a classical field generated by the valence quarks

- Dynamics of the field described by Yang-Mills classical equations:

$$
\left[D_{\mu}, F^{\mu \nu}\right]=J^{\nu} \propto \rho(x)
$$

- Calculation of observables: average over background classical fields

$$
\langle\mathcal{O}[\rho]\rangle=\int[d \rho] \exp \left\{-\int d x \operatorname{Tr}\left[\rho^{2}\right]\right\} \mathcal{O}[\rho]
$$

Color Glass Condensate: McLerran-Venugopalan model

- We use an approximation of QCD for high gluon densities where we replace the gluons with a classical field generated by the valence quarks

- Dynamics of the field described by Yang-Mills classical equations:

$$
\left[D_{\mu}, F^{\mu \nu}\right]=J^{\nu} \propto \rho(x)
$$

- Calculation of observables: average over background classical fields
- Basic building block: 2-point correlator (McLerran-Venugopalan)

$$
\left\langle\rho^{a}\left(x^{-}, x_{\perp}\right) \rho^{b}\left(y^{-}, y_{\perp}\right)\right\rangle=\mu^{2}\left(x^{-}\right) \delta^{a b} \delta\left(x^{-}-y^{-}\right) \delta^{(2)}\left(x_{\perp}-y_{\perp}\right)
$$

Steps for the calculation

1) Calculate the gluon fields at early times in a HIC

2) Build the energy-momentum tensor

$$
T_{0}^{\mu \nu}\left(x_{\perp}\right)=2 \operatorname{Tr}\left\{\frac{1}{4} g^{\mu \nu} F^{\alpha \beta} F_{\alpha \beta}-F^{\mu \alpha} F_{\alpha}^{\nu}\right\}_{0}
$$

3) Average over the color source distributions

$$
\begin{aligned}
& \left\langle T_{0}^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\int\left[d \rho_{1}\right] W_{1}\left[\rho_{1}\right]\left[d \rho_{2}\right] W_{2}\left[\rho_{2}\right] T_{0}^{\mu \nu}\left(x_{\perp}\right)\left[\rho_{1}, \rho_{2}\right] \\
& \left\langle T_{0}^{\mu \nu}\left(x_{\perp}\right) T_{0}^{\sigma \gamma}\left(y_{\perp}\right)\right\rangle=\int\left[d \rho_{1}\right] W_{1}\left[\rho_{1}\right]\left[d \rho_{2}\right] W_{2}\left[\rho_{2}\right] T_{0}^{\mu \nu}\left(x_{\perp}\right) T_{0}^{\sigma \gamma}\left(y_{\perp}\right)\left[\rho_{1}, \rho_{2}\right]
\end{aligned}
$$

Calculation of the gluon fields

$$
\begin{aligned}
& {\left[D_{\mu}, F^{\mu \nu}\right]=J_{1}^{\nu}+J_{2}^{\nu}} \\
& \mathbf{J}_{1}^{\nu}=\rho_{\mathbf{1}}\left(\mathbf{x}_{\perp}\right) \delta\left(\mathbf{x}^{-}\right) \delta^{\nu+} \\
& \mathbf{J}_{2}^{\nu}=\rho_{\mathbf{2}}\left(\mathrm{x}_{\perp}\right) \delta\left(\mathrm{x}^{+}\right) \delta^{\nu-}
\end{aligned}
$$

The gluon fields at $\mathrm{T}=0^{+}$in HICs

$$
\begin{aligned}
& {\left[D_{\mu}, F^{\mu \nu}\right]=J_{1}^{\nu}+J_{2}^{\nu}} \\
& \mathbf{J}_{1}^{\nu}=\rho_{\mathbf{1}}\left(\mathbf{x}_{\perp}\right) \delta\left(\mathbf{x}^{-}\right) \delta^{\nu+} \\
& \mathbf{J}_{2}^{\nu}=\rho_{\mathbf{2}}\left(\mathrm{x}_{\perp}\right) \delta\left(\mathrm{x}^{+}\right) \delta^{\nu-}
\end{aligned}
$$

[1, 2] Single nucleus solution

$$
\begin{aligned}
A_{1}^{ \pm}= & 0 \\
A_{1}^{i}= & \theta\left(x^{-}\right) \int_{-\infty}^{\infty} d z^{-} U_{1}^{\dagger}\left(z^{-}, x_{\perp}\right) \frac{\partial^{i} \tilde{\rho}_{1}\left(z^{-}, x_{\perp}\right)}{\nabla^{2}} U_{1}\left(z^{-}, x_{\perp}\right) \equiv \theta\left(x^{-}\right) \alpha_{1}^{i}\left(x_{\perp}\right) \\
& U_{1}\left(x^{-}, x_{\perp}\right)=\mathrm{P}^{-} \exp \left\{-i g \int_{x_{0}^{-}}^{x^{-}} d z^{-} \frac{1}{\nabla^{2}} \tilde{\rho}_{1}\left(z^{-}, x_{\perp}\right)\right\}
\end{aligned}
$$

The gluon fields at $\mathrm{T}=0^{+}$in HICs

$$
\begin{aligned}
& {\left[D_{\mu}, F^{\mu \nu}\right]=J_{1}^{\nu}+J_{2}^{\nu}} \\
& \mathbf{J}_{1}^{\nu}=\rho_{\mathbf{1}}\left(\mathbf{x}_{\perp}\right) \delta\left(\mathbf{x}^{-}\right) \delta^{\nu+} \\
& \mathrm{J}_{2}^{\nu}=\rho_{2}\left(\mathrm{x}_{\perp}\right) \delta\left(\mathrm{x}^{+}\right) \delta^{\nu-}
\end{aligned}
$$

[1, 2] Single nucleus solution

$$
\begin{aligned}
A_{1}^{ \pm}= & 0 \\
A_{1}^{i}= & \theta\left(x^{-}\right) \int_{-\infty}^{\infty} d z^{-} U_{1}^{\dagger}\left(z^{-}, x_{\perp}\right) \frac{\partial^{i} \tilde{\rho}_{1}\left(z^{-}, x_{\perp}\right)}{\nabla^{2}} U_{1}\left(z^{-}, x_{\perp}\right) \equiv \theta\left(x x_{1}^{i}\left(x_{\perp}\right)\right. \\
& U_{1}\left(x^{-}, x_{\perp}\right)=\mathrm{P}^{-} \exp \left\{-i g \int_{x_{0}^{-}}^{x^{-}} d z^{-} \frac{1}{\nabla^{2}} \tilde{\rho}_{1}\left(z^{-}, x_{\perp}\right)\right\}
\end{aligned}
$$

[3] Forward light cone $\tau=0^{+}$

$$
\begin{array}{ll}
A^{ \pm}= \pm x^{ \pm} \alpha\left(\tau=0^{+}, x_{\perp}\right) \\
A^{i} & =\alpha^{i}\left(\tau=0^{+}, x_{\perp}\right)
\end{array} \quad \begin{aligned}
& \alpha^{i}\left(\tau=0^{+}, x_{\perp}\right)=\alpha_{1}^{i}\left(x_{\perp}\right)+\alpha_{2}^{i}\left(x_{\perp}\right) \\
& \alpha\left(\tau=0^{+}, x_{\perp}\right)=\frac{i g}{2}\left[\alpha_{1}^{i}\left(x_{\perp}\right), \alpha_{2}^{i}\left(x_{\perp}\right)\right]
\end{aligned}
$$

Calculation of the energy-momentum tensor $T^{\mu \nu}\left(\tau=0^{+}\right)$

$$
\begin{aligned}
& {\left[D_{\mu}, F^{\mu \nu}\right]=J_{1}^{\nu}+J_{2}^{\nu}} \\
& \mathbf{J}_{1}^{\nu}=\rho_{1}\left(\mathbf{x}_{\perp}\right) \delta\left(\mathbf{x}^{-}\right) \delta^{\nu+} \\
& \mathbf{J}_{2}^{\nu}=\rho_{\mathbf{2}}\left(\mathrm{x}_{\perp}\right) \delta\left(\mathrm{x}^{+}\right) \delta^{\nu-}
\end{aligned}
$$

[1, 2] Single nucleus solution

$$
\begin{aligned}
A_{1}^{ \pm}= & 0 \\
A_{1}^{i}= & \theta\left(x^{-}\right) \int_{-\infty}^{\infty} d z^{-} U_{1}^{\dagger}\left(z^{-}, x_{\perp}\right) \frac{\partial^{i} \tilde{\rho}_{1}\left(z^{-}, x_{\perp}\right)}{\nabla^{2}} U_{1}\left(z^{-}, x_{\perp}\right) \equiv \theta\left(x^{-}\right) \alpha_{1}^{i}\left(x_{\perp}\right) \\
& U_{1}\left(x^{-}, x_{\perp}\right)=\mathrm{P}^{-} \exp \left\{-i g \int_{x_{0}^{-}}^{x^{-}} d z^{-} \frac{1}{\nabla^{2}} \tilde{\rho}_{1}\left(z^{-}, x_{\perp}\right)\right\}
\end{aligned}
$$

[3] Forward light cone $\tau=0^{+}$

$$
\begin{aligned}
A^{ \pm} & = \pm x^{ \pm} \alpha\left(\tau=0^{+}, x_{\perp}\right) & \alpha^{i}\left(\tau=0^{+}, x_{\perp}\right) & =\alpha_{1}^{i}\left(x_{\perp}\right)+\alpha_{2}^{i}\left(x_{\perp}\right) \\
A^{i} & =\alpha^{i}\left(\tau=0^{+}, x_{\perp}\right) & \alpha\left(\tau=0^{+}, x_{\perp}\right) & =\frac{i g}{2}\left[\alpha_{1}^{i}\left(x_{\perp}\right), \alpha_{2}^{i}\left(x_{\perp}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
T_{0}^{\mu \nu} & =\frac{1}{4} g^{\mu \nu} F^{\alpha \beta, a} F_{\alpha \beta}^{a}-F^{\mu \alpha, a} F_{\alpha}^{\nu, a} \\
& =-\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left(\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right) \times \operatorname{diag}(1,1,1,-1) \\
& \equiv \epsilon_{0} \times \operatorname{diag}(1,1,1,-1) \equiv \epsilon_{0} \times t^{\mu \nu}
\end{aligned}
$$

Correlators of the energy-momentum tensor at $\tau=0^{+}$

$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\left\langle\epsilon_{0}\right\rangle t^{\mu \nu}$

- For the 1-point correlator of $T^{\mu \nu}$:

$$
\begin{aligned}
\left\langle\epsilon_{0}\right\rangle & =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\operatorname{Tr}\left\{\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right\}\right\rangle \\
& =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\alpha_{1}^{i, a} \alpha_{2}^{j, b} \alpha_{1}^{k, c} \alpha_{2}^{l, d}\right\rangle \operatorname{Tr}\left\{\left[t^{a}, t^{b}\right]\left[t^{c}, t^{d}\right]\right\} \\
& =\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) f^{a b m} f^{c d m}\left\langle\alpha_{1}^{i, a}\left(x_{\perp}\right) \alpha_{1}^{k, c}\left(x_{\perp}\right)\right\rangle_{1}\left\langle\alpha_{2}^{j, b}\left(x_{\perp}\right) \alpha_{2}^{l, d}\left(x_{\perp}\right)\right\rangle_{2}
\end{aligned}
$$

$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\left\langle\epsilon_{0}\right\rangle t^{\mu \nu}$

- For the 1-point correlator of $T^{\mu \nu}$:

$$
\begin{aligned}
\left\langle\epsilon_{0}\right\rangle & =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\operatorname{Tr}\left\{\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right\}\right\rangle \\
& =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\alpha_{1}^{i, a} \alpha_{2}^{j, b} \alpha_{1}^{k, c} \alpha_{2}^{l, d}\right\rangle \operatorname{Tr}\left\{\left[t^{a}, t^{b}\right]\left[t^{c}, t^{d}\right]\right\} \\
& =\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) f^{a b m} f^{c d m}\left\langle\alpha_{1}^{i, a}\left(x_{\perp}\right) \alpha_{1}^{k, c}\left(x_{\perp}\right)\right\rangle_{1}\left\langle\alpha_{2}^{j, b}\left(x_{\perp}\right) \alpha_{2}^{l, d}\left(x_{\perp}\right)\right\rangle_{2}
\end{aligned}
$$

- We momentarily take two different transverse coordinates:

$$
\begin{array}{cc}
\left\langle\alpha^{i, a}\left(x_{\perp}\right) \alpha^{j, b}\left(y_{\perp}\right)\right\rangle=\int_{-\infty}^{\infty} d z^{-} d z^{-1}\left\langle\frac{\partial^{i} \tilde{\rho}^{a^{\prime}}\left(z^{-}, x_{\perp}\right)}{\nabla^{2}} U^{a^{\prime} a}\left(z^{-}, x_{\perp}\right) \frac{\partial^{j} \tilde{\rho}^{b^{\prime}}\left(z^{-1}, y_{\perp}\right)}{\nabla^{2}} U^{b^{\prime} b}\left(z^{-1}, y_{\perp}\right)\right\rangle & \sim e^{i \rho}
\end{array}
$$

$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\left\langle\epsilon_{0}\right\rangle t^{\mu \nu}$

- For the 1-point correlator of $T^{\mu \nu}$:

$$
\begin{aligned}
\left\langle\epsilon_{0}\right\rangle & =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\operatorname{Tr}\left\{\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right\}\right\rangle \\
& =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\alpha_{1}^{i, a} \alpha_{2}^{j, b} \alpha_{1}^{k, c} \alpha_{2}^{l, d}\right\rangle \operatorname{Tr}\left\{\left[t^{a}, t^{b}\right]\left[t^{c}, t^{d}\right]\right\} \\
& =\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) f^{a b m} f^{c d m}\left\langle\alpha_{1}^{i, a}\left(x_{\perp}\right) \alpha_{1}^{k, c}\left(x_{\perp}\right)\right\rangle_{1}\left\langle\alpha_{2}^{j, b}\left(x_{\perp}\right) \alpha_{2}^{l, d}\left(x_{\perp}\right)\right\rangle_{2}
\end{aligned}
$$

- We momentarily take two different transverse coordinates:
$\left\langle\alpha^{i, a}\left(x_{\perp}\right) \alpha^{j, b}\left(y_{\perp}\right)\right\rangle=\int_{-\infty}^{\infty} d z^{-} d z^{-\prime}\left\langle\frac{\partial^{i} \tilde{\rho}^{a^{\prime}}\left(z^{-}, x_{\perp}\right)}{\nabla_{\perp}^{2}} \frac{\partial^{j} \tilde{\rho}^{b^{\prime}}\left(z^{-\prime} y_{\perp}\right)}{\nabla_{\perp}^{2}}\right\rangle\left\langle U^{a^{\prime} a}\left(z^{-}, x_{\perp}\right) U^{b^{\prime} b}\left(z^{-\prime}, y_{\perp}\right)\right\rangle$
Luckily, Wilson lines and (external) color source densities factorize

$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\left\langle\epsilon_{0}\right\rangle t^{\mu \nu}$

- For the 1-point correlator of $T^{\mu \nu}$:

$$
\begin{aligned}
\left\langle\epsilon_{0}\right\rangle & =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\operatorname{Tr}\left\{\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right\}\right\rangle \\
& =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\alpha_{1}^{i, a} \alpha_{2}^{j, b} \alpha_{1}^{k, c} \alpha_{2}^{l, d}\right\rangle \operatorname{Tr}\left\{\left[t^{a}, t^{b}\right]\left[t^{c}, t^{d}\right]\right\} \\
& =\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) f^{a b m} f^{c d m}\left\langle\alpha_{1}^{i, a}\left(x_{\perp}\right) \alpha_{1}^{k, c}\left(x_{\perp}\right)\right\rangle_{1}\left\langle\alpha_{2}^{j, b}\left(x_{\perp}\right) \alpha_{2}^{l, d}\left(x_{\perp}\right)\right\rangle_{2}
\end{aligned}
$$

- We momentarily take two different transversecoordinates:

$$
\left.\left\langle\alpha^{i, a}\left(x_{\perp}\right) \alpha^{j, b}\left(y_{\perp}\right)\right\rangle=\int_{-\infty}^{\infty} d z^{-} d z z^{\left.\frac{\partial^{i} \tilde{\rho}^{a^{\prime}}\left(z^{-}, x_{\perp}\right)}{\nabla_{\perp}^{2}} \frac{\partial^{j} \tilde{\rho}^{b^{\prime}}\left(z^{-} y_{\perp}\right)}{\nabla_{\perp}^{2}}\right\rangle} U^{a^{\prime} a}\left(z^{-}, x_{\perp}\right) U^{b^{\prime} b}\left(z^{-1}, y_{\perp}\right)\right\rangle
$$

$$
\delta^{a^{\prime} b^{\prime}} \mu^{2}\left(x^{-}\right) \delta\left(x^{-}-y^{-}\right) \partial_{x}^{i} \partial_{y}^{j} L\left(x_{\perp}-y_{\perp}\right)
$$

Where:

$$
L\left(x_{\perp}-y_{\perp}\right)=\int d^{2} z_{\perp} G\left(x_{\perp}-z_{\perp}\right) G\left(y_{\perp}-z_{\perp}\right) .
$$

$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\left\langle\epsilon_{0}\right\rangle t^{\mu \nu}$

- For the 1-point correlator of $T^{\mu \nu}$:

$$
\begin{aligned}
\left\langle\epsilon_{0}\right\rangle & =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\operatorname{Tr}\left\{\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right\}\right\rangle \\
& =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\alpha_{1}^{i, a} \alpha_{2}^{j, b} \alpha_{1}^{k, c} \alpha_{2}^{l, d}\right\rangle \operatorname{Tr}\left\{\left[t^{a}, t^{b}\right]\left[t^{c}, t^{d}\right]\right\} \\
& =\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) f^{a b m} f^{c d m}\left\langle\alpha_{1}^{i, a}\left(x_{\perp}\right) \alpha_{1}^{k, c}\left(x_{\perp}\right)\right\rangle_{1}\left\langle\alpha_{2}^{j, b}\left(x_{\perp}\right) \alpha_{2}^{l, d}\left(x_{\perp}\right)\right\rangle_{2}
\end{aligned}
$$

- We momentarily take two different transverse coordinates:
$\left\langle\alpha^{i, a}\left(x_{\perp}\right) \alpha^{j, b}\left(y_{\perp}\right)\right\rangle=\int_{-\infty}^{\infty} d z^{-} d z^{-\prime}\left\langle\frac{\partial^{i} \tilde{\rho}^{a^{\prime}}\left(z^{-}, x_{\perp}\right)}{\nabla_{\perp}^{2}} \frac{\partial^{j} \tilde{\rho}^{b^{\prime}}\left(z^{-1} y_{\perp}\right)}{\nabla_{\perp}^{2}}\left\langle U^{a^{\prime a} a}\left(z^{-}, x_{\perp}\right) U^{b^{\prime} b}\left(z^{-1}, y_{\perp}\right)\right\rangle\right.$

$$
\frac{\delta^{a b} \delta^{a^{\prime} b^{\prime}}}{N} \exp \left[-g^{2} \frac{N}{2} \Gamma\left(x_{\perp}, y_{\perp}\right) \bar{\mu}^{2}\left(x^{-}\right)\right]
$$

$\left\langle T^{\mu \nu}\left(x_{\perp}\right)\right\rangle=\left\langle\epsilon_{0}\right\rangle t^{\mu \nu}$

- For the 1-point correlator of $T^{\mu \nu}$:

$$
\begin{aligned}
\left\langle\epsilon_{0}\right\rangle & =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\operatorname{Tr}\left\{\left[\alpha_{1}^{i}, \alpha_{2}^{j}\right]\left[\alpha_{1}^{k}, \alpha_{2}^{l}\right]\right\}\right\rangle \\
& =-g^{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left\langle\alpha_{1}^{i, a} \alpha_{2}^{j, b} \alpha_{1}^{k, c} \alpha_{2}^{l, d}\right\rangle \operatorname{Tr}\left\{\left[t^{a}, t^{b}\right]\left[t^{c}, t^{d}\right]\right\} \\
& =\frac{g^{2}}{2}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) f^{a b m} f^{c d m}\left\langle\alpha_{1}^{i, a}\left(x_{\perp}\right) \alpha_{1}^{k, c}\left(x_{\perp}\right)\right\rangle_{1}\left\langle\alpha_{2}^{j, b}\left(x_{\perp}\right) \alpha_{2}^{l, d}\left(x_{\perp}\right)\right\rangle_{2} \\
& =\frac{g^{2}}{8} f^{a b m} f^{c d m}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) \delta^{a c} \delta^{i k} \delta^{b d} \delta^{j l} \bar{\mu}_{1}^{2} \bar{\mu}_{2}^{2}\left(\partial^{2} L\left(0_{\perp}\right)\right)^{2} \\
& =g^{2} C_{A}^{2} C_{F} \bar{\mu}_{1}^{2} \bar{\mu}_{2}^{2}\left(\partial^{2} L\left(0_{\perp}\right)\right)^{2} \\
& =\frac{C_{F}}{g^{2}} \bar{Q}_{s 1}^{2}\left(x_{\perp}\right) \bar{Q}_{s 2}^{2}\left(x_{\perp}\right)\left(4 \pi \partial^{2} L\left(0_{\perp}\right)\right)^{2}
\end{aligned}
$$

- Here we have introduced a momentum scale characterizing each nucleus:

$$
\bar{Q}_{s}^{2}=\alpha_{s} N_{c} \bar{\mu}^{2}\left(x_{\perp}\right)
$$

- In the MV model the factor $\partial^{2} L\left(0_{\perp}\right)$ yields a logarithmic IR divergence.

$$
\left\langle T^{\mu \nu}\left(x_{\perp}\right) T^{\sigma \rho}\left(y_{\perp}\right)\right\rangle=\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle t^{\mu \nu} t^{\sigma \rho}
$$

- For the 2-point correlator of $T^{\mu \nu}$: prepare for trouble and make it double

$$
\begin{aligned}
\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle=\frac{g^{4}}{4}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) & \left(\delta^{i^{\prime} j^{\prime}} \delta^{k^{\prime} l^{\prime}}+\epsilon^{i^{\prime} j^{\prime}} \epsilon^{k^{\prime} l^{\prime}}\right) f^{a b n} f^{c d n} f^{a^{\prime} b^{\prime} m} f^{c^{\prime} d^{\prime} m} \\
& \times\left\langle\alpha_{1}^{i a}{ }_{x} \alpha_{1 x}^{k c} \alpha_{1}^{i^{\prime} a_{y}^{\prime}} \alpha_{1 y}^{k^{\prime} c^{\prime}}\right\rangle\left\langle\alpha_{2}^{j b}{ }_{x}^{j} \alpha_{2}^{l d}{ }_{x}^{d} \alpha_{2}^{j^{\prime} b^{\prime}} \alpha_{2}^{l^{\prime} d^{\prime}}\right\rangle
\end{aligned}
$$

$$
\left\langle T^{\mu \nu}\left(x_{\perp}\right) T^{\sigma \rho}\left(y_{\perp}\right)\right\rangle=\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle t^{\mu \nu} t^{\sigma \rho}
$$

- For the 2-point correlator of $T^{\mu \nu}$: prepare for trouble and make it double

$$
\begin{aligned}
\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle=\frac{g^{4}}{4}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) & \left(\delta^{i^{\prime} j^{\prime}} \delta^{k^{\prime} l^{\prime}}+\epsilon^{i^{\prime} j^{\prime}} \epsilon^{k^{\prime} l^{\prime}}\right) f^{a b n} f^{c d n} f^{a^{\prime} b^{\prime} m} f^{c^{\prime} d^{\prime} m} \\
& \times\left\langle\alpha_{1 x}^{i a} \alpha_{1 x}^{k c} \alpha_{1}^{i^{\prime} a^{\prime}} \alpha_{1 y}^{k^{\prime} c^{\prime}}\right\rangle\left\langle\alpha_{2}^{j b} \alpha_{2}^{l d}{ }_{x}^{j^{\prime} \alpha_{y}^{\prime} b_{y}^{\prime}} \alpha_{2}^{l^{\prime} d^{\prime}}\right\rangle
\end{aligned}
$$

- The building block:

$$
\begin{aligned}
& \left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle=\int_{-\infty}^{\infty} d z^{-} d w^{-} d z^{-\prime} d w^{-1}\left\langle\frac{\partial^{i} \tilde{\rho}^{e}\left(z^{-}, x_{\perp}\right)}{\nabla^{2}} U^{e a}\left(z^{-}, x_{\perp}\right)\right. \\
& \left.\frac{\partial^{k} \tilde{\rho}^{f}\left(w^{-}, x_{\perp}\right)}{\nabla^{2}} U^{f c}\left(w^{-}, x_{\perp}\right) \frac{\partial^{i^{\prime}} \tilde{\rho}^{e^{\prime}}\left(z^{-\prime}, y_{\perp}\right)}{\nabla^{2}} U^{e^{\prime} a^{\prime}}\left(z^{-\prime}, y_{\perp}\right) \frac{\partial^{k^{\prime}} \tilde{\rho}^{f^{\prime}}\left(w^{-\prime}, y_{\perp}\right)}{\nabla^{2}} U^{f^{\prime} c^{\prime}}\left(w^{-\prime}, y_{\perp}\right)\right\rangle .
\end{aligned}
$$

$$
\left\langle T^{\mu \nu}\left(x_{\perp}\right) T^{\sigma \rho}\left(y_{\perp}\right)\right\rangle=\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle t^{\mu \nu} t^{\sigma \rho}
$$

- For the 2-point correlator of $T^{\mu \nu}$: prepare for trouble and make it double

$$
\begin{aligned}
&\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle=\frac{g^{4}}{4}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left(\delta^{i^{\prime} j^{\prime}} \delta^{k^{\prime} l^{\prime}}+\epsilon^{i^{\prime} j^{\prime}} \epsilon^{k^{\prime} l^{\prime}}\right) f^{a b n} f^{c d n} f^{a^{\prime} b^{\prime} m} f^{c^{\prime} d^{\prime} m} \\
& \times\left\langle\alpha_{1 x}^{i a} \alpha_{1 x}^{k c} \alpha_{1}^{i_{1}^{\prime} a^{\prime}} \alpha_{1}^{k^{\prime} c_{y}^{\prime}}\right\rangle\left\langle\alpha_{2}^{j b} \alpha_{2}^{l d} \alpha_{x}^{\left.\alpha_{2}^{j^{\prime} b_{y}^{\prime}} \alpha_{2}^{l^{\prime} d^{\prime}}\right\rangle}\right\rangle
\end{aligned}
$$

- Technical difficulties:
- The expansion of the correlator $\left.\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right)\right)^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle$ is far more difficult than that of $\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(y_{\perp}\right)\right\rangle$. Schematically: [Fillion-Gourdeau \& Jeon '09]

$$
\begin{array}{r}
\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle=\frac{\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle}{3 \text { terms }}+\frac{\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}}{4 \text { terms }} \\
\text { (Wick's theorem) }
\end{array}
$$

$$
\left\langle T^{\mu \nu}\left(x_{\perp}\right) T^{\sigma \rho}\left(y_{\perp}\right)\right\rangle=\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle t^{\mu \nu} t^{\sigma \rho}
$$

- For the 2-point correlator of $T^{\mu \nu}$: prepare for trouble and make it double

$$
\begin{aligned}
&\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle=\frac{g^{4}}{4}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right)\left(\delta^{i^{\prime} j^{\prime}} \delta^{k^{\prime} l^{\prime}}+\epsilon^{i^{\prime} j^{\prime}} \epsilon^{k^{\prime} l^{\prime}}\right) f^{a b n} f^{c d n} f^{a^{\prime} b^{\prime} m} f^{c^{\prime} d^{\prime} m} \\
& \times\left\langle\alpha_{1 x}^{i a} \alpha_{1}^{k c} \alpha_{1}^{i_{1}^{\prime} a_{y}^{\prime}} \alpha_{1}^{k_{y}^{\prime} c^{\prime}}\right\rangle\left\langle\alpha_{2}^{j b} \alpha_{2}^{l d} \alpha_{x}^{l} \alpha_{2}^{j^{\prime} b_{y}^{\prime}} \alpha_{2}^{l^{\prime} d^{\prime}}\right\rangle
\end{aligned}
$$

- Technical difficulties:
- The expansion of the correlator $\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right) i^{i^{i} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle$ is far more difficult than that of $\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(y_{\perp}\right)\right\rangle$. Schematically: [Fillion-Gourdeau \& Jeon '09]

$$
\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle=\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle+\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}
$$

- Instead of having to calculate the adjoint Wilson line dipole, we need the much more complex adjoint Wilson line quadrupole [Kovner \& Wiedemann '01]

$$
\left\langle U^{a b}\left(z^{-}, x_{\perp}\right) U^{c d}\left(z^{-}, y_{\perp}\right) U^{e f}\left(z^{-}, x_{\perp}^{\prime}\right) U^{g h}\left(z^{-}, y_{\perp}^{\prime}\right)\right\rangle
$$

- For the 2-point correlator of $T^{\mu \nu}$: prepare for trouble and make it double

$$
\begin{aligned}
\left\langle\epsilon\left(x_{\perp}\right) \epsilon\left(y_{\perp}\right)\right\rangle=\frac{g^{4}}{4}\left(\delta^{i j} \delta^{k l}+\epsilon^{i j} \epsilon^{k l}\right) & \left(\delta^{i^{\prime} j^{\prime}} \delta^{k^{\prime} l^{\prime}}+\epsilon^{i^{\prime} j^{\prime}} \epsilon^{k^{\prime} l^{\prime}}\right) f^{a b n} f^{c d n} f^{a^{\prime} b^{\prime} m} f^{c^{\prime} d^{\prime} m} \\
& \times\left\langle\alpha_{1 x}^{i a} \alpha_{1 x}^{k c} \alpha_{1}^{i^{\prime} a^{\prime}} \alpha_{1 y}^{k^{\prime} c^{\prime}}\right\rangle\left\langle\alpha_{2}^{j b} \alpha_{2}^{l d}{ }_{x}^{d_{2}^{\prime} \alpha_{y}^{\prime}} \alpha_{2}^{l^{\prime} d^{\prime}}\right\rangle
\end{aligned}
$$

- Technical difficulties:
- The expansion of the correlator $\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle$ is far more difficult than that of $\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(y_{\perp}\right)\right\rangle$. Schematically: [Fillion-Gourdeau \& Jeon '09]

$$
\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle=\left\langle\rho^{4}\right\rangle\left\langle U^{4}\right\rangle+\left\langle\rho^{2}\right\rangle\left\langle\rho^{2} U^{4}\right\rangle_{c}
$$

- Instead of having to calculate the adjoint Wilson line dipole, we need the much more complex adjoint Wilson line quadrupole [Kovner \& Wiedemann '01]

$$
\left\langle U^{a b}\left(z^{-}, x_{\perp}\right) U^{c d}\left(z^{-}, y_{\perp}\right) U^{e f}\left(z^{-}, x_{\perp}^{\prime}\right) U^{g h}\left(z^{-}, y_{\perp}^{\prime}\right)\right\rangle
$$

- The color structure of this object is frustratingly complex. Even with all parts analytically calculated, the contraction of the color indices demands a computational treatment (via FeynCalc)

$\operatorname{Cov}\left[\epsilon_{0}\right]\left(x_{\perp}, y_{\perp}\right)=\left\langle\epsilon_{0}\left(x_{\perp}\right) \epsilon_{0}\left(y_{\perp}\right)\right\rangle-\left\langle\epsilon_{0}\left(x_{\perp}\right)\right\rangle\left\langle\epsilon_{0}\left(y_{\perp}\right)\right\rangle$

$$
\begin{aligned}
& \operatorname{Cov}[\epsilon]\left(\tau=0^{+} ; x_{\perp}, y_{\perp}\right)=-\frac{\partial_{x}^{i} \Gamma \partial_{y}^{i} \Gamma\left(N_{c}^{2}-1\right) A\left(4 A^{2}-B^{2}\right)}{16 N_{c}^{2} \Gamma^{5} g^{4}}\left(f_{1} g_{2}+f_{2} g_{1}\right) \\
& +\frac{\left(N_{c}^{2}-1\right)\left(16 A^{4}+B^{4}\right)}{2 N_{c}^{2} \Gamma^{4} g^{4}} f_{1} f_{2}+\frac{\left(\partial_{x}^{i} \Gamma \partial_{y}^{i} \Gamma\right)^{2}\left(N_{c}^{2}-1\right) A^{2}}{64 N_{c}^{2} \Gamma^{6} g^{4}} g_{1} g_{2} \\
& +\frac{\left(4 A^{2}+B^{2}\right)^{2} r^{2}}{N_{c}^{2} \Gamma^{4} g^{4}}\left(\left[\frac{1}{2} Q_{s 1}^{2} Q_{s 2}^{2} r^{2}+4 Q_{s 2}^{2} e^{-\frac{Q_{s 1}^{2} r^{2}}{4}}-4 Q_{s 1}^{2}\right]+[1 \leftrightarrow 2]\right) \\
& +\frac{\left(N_{c}^{2}-1\right)\left(4 A^{2}+B^{2}\right)}{2 N_{c}^{2} \Gamma^{2} g^{4}}\left(4 \pi \partial^{2} L\left(0_{\perp}\right)\right)^{2}\left(\left[\bar{Q}_{s 1}^{4}\left(Q_{s 2}^{2} r^{2}-4+4 e^{-\frac{Q_{s 2}^{2} r^{2}}{4}}\right)\right]+[1 \leftrightarrow 2]\right) \\
& +\frac{\left(4 A^{2}+B^{2}\right)^{2}}{\Gamma^{4} g^{4} N_{c}^{2}\left(N_{c}^{2}-1\right)^{2}\left(N_{c}^{2}-4\right)^{2}}\left(\left[-4\left(N_{c}^{2}-1\right)\left(N_{c}^{2}-4\right)\left(N_{c}^{6}-3 N_{c}^{4}-26 N_{c}^{2}+16\right) e^{-\frac{Q_{s 1}^{2} r^{2}}{4}}\right.\right. \\
& +\left(N_{c}-3\right)\left(N_{c}+1\right)^{3}\left(N_{c}+2\right)^{2} N_{c}^{3}\left((N-2) e^{\frac{Q_{s 1}^{2} r^{2}}{4}}-2(N-1)\right) e^{-\frac{r^{2}\left(N_{c} Q_{s 1}^{2}+2\left(N_{c}-1\right) Q_{s 2}^{2}\right)}{4 N_{c}}} \\
& +\left(N_{c}+3\right)\left(N_{c}-1\right)^{3}\left(N_{c}-2\right)^{2} N_{c}^{3}\left((N+2) e^{\frac{Q_{s 1}^{2} r^{2}}{4}}-2(N+1)\right) e^{-\frac{r^{2}\left(N_{c} Q_{s 1}^{2}+2\left(N_{c}+1\right) Q_{s 2}^{2}\right)}{4 N_{c}}} \\
& +4\left(N_{c}^{2}-8\right)\left(N_{c}^{2}-1\right)^{3}\left(N_{c}^{2}+4\right) e^{-\frac{1}{4} r^{2}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)} \\
& +\frac{1}{2}\left(N_{c}-2\right)^{2}\left(N_{c}-1\right)^{3}\left(N_{c}+3\right) N_{c}^{4} e^{-\frac{\left(N_{c}+1\right) r^{2}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)}{2 N_{c}}} \\
& \left.+\frac{1}{2}\left(N_{c}-3\right)\left(N_{c}+1\right)^{3}\left(N_{c}+2\right)^{2} N_{c}^{4} e^{-\frac{\left(N_{c}-1\right) r^{2}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)}{2 N_{c}}}\right]+[1 \leftrightarrow 2] \\
& \left.+2\left(N_{c}^{2}-4\right)^{2}\left(N_{c}^{6}+2 N_{c}^{4}-19 N_{c}^{2}+8\right)\right) \\
& \text { with: } \\
& f_{1,2}=e^{-\frac{Q_{s 1,2}^{2} r^{2}}{4}}\left(Q_{s 1,2}^{2} r^{2}+4\right)-4 \\
& g_{1,2}=e^{-\frac{Q_{s 1,2}^{2} r^{2}}{4}}\left(Q_{s 1,2}^{4} r^{4}+8 Q_{s 1,2}^{2} r^{2}+32\right)-32 \text {. }
\end{aligned}
$$

Pocket formulae

- Omitting for the moment the issues with the r->0 divergencies (GBW-model)

$$
r->0
$$

$$
\begin{aligned}
& \lim _{r \rightarrow 0} \operatorname{Cov}[\epsilon]\left(0^{+} ; x_{\perp}, y_{\perp}\right)=\frac{3 C_{F}}{g^{4} 2 N_{c}} Q_{s 1}^{4} Q_{s 2}^{4} \\
& \lim _{r \rightarrow 0} \frac{\left.\operatorname{Cov}[\epsilon]\left(0^{+} ; x_{\perp}\right), y_{\perp}\right)}{\left\langle\epsilon_{0}\left(x_{\perp}\right)\right\rangle\left\langle\epsilon_{0}\left(y_{\perp}\right)\right\rangle}=\frac{3}{\left(N_{c}^{2}-1\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \operatorname{Cov}[\epsilon]\left(0^{+} ; x_{\perp}, y_{\perp}\right)=\frac{2\left(N_{c}^{2}-1\right)\left(Q_{s 1}^{4} Q_{s 2}^{2}+Q_{s 1}^{2} Q_{s 2}^{4}\right)}{g^{4} N_{c}^{2} r^{2}} \\
& \lim _{r \rightarrow \infty} \frac{\operatorname{Cov}[\epsilon]\left(0^{+} ; x_{\perp}, y_{\perp}\right)}{\left\langle\epsilon_{0}\left(x_{\perp}\right)\right\rangle\left\langle\epsilon_{0}\left(y_{\perp}\right)\right\rangle}=\frac{1}{2\left(N_{c}^{2}-1\right) r^{2}}\left(\frac{1}{Q_{s 1}^{2}}+\frac{1}{Q_{s 2}^{2}}\right)
\end{aligned}
$$

Comparison with the 'Glasma Graph' approximation

- Glasma Graph approximation [Lappi \& Schlichting 2018, Muller \& Schaefer 2012]. Assume Gaussian distribution of the produced gluon fields:

$$
\begin{aligned}
\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle_{\mathrm{GG}} & =\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k c}\left(x_{\perp}\right)\right\rangle\left\langle\alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle \\
& +\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right)\right\rangle\left\langle\alpha^{k c}\left(x_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle \\
& +\left\langle\alpha^{i a}\left(x_{\perp}\right) \alpha^{k^{\prime} c^{\prime}}\left(y_{\perp}\right)\right\rangle\left\langle\alpha^{k c}\left(x_{\perp}\right) \alpha^{i^{\prime} a^{\prime}}\left(y_{\perp}\right)\right\rangle .
\end{aligned}
$$

- Agreement with full result in the $r->0$ limit. Strong discrepancies in the $r->\infty$ limit

Nc expansion

First orders of the Nc expansion: N_{c}^{0} and N_{c}^{-2}

Sum of the first two orders of the N expansion of the energy density covariance for $\mathrm{N}=3$ in the classical MV model.

Ratio between the full result and the sum of the first two orders of the N expansion, which turns out to be a very good approximation.

Conclusions

- We have performed an exact analytical calculation of the covariance of the energy momentum tensor of the Glasma at $\tau=0^{+}$, in the framework of the Color Glass Condensate.
- We expect to be able to generalize this framework by introducing an impact parameter dependence and relaxing some of the original assumptions, which could potentially open the door to phenomenological applications.
- The following steps are computing the time evolution of our result towards thermalization time $\tau \sim 1 / Q_{s}$, where it can serve as input for hydro QGP simulations.
$T^{\mu \nu}=T_{0}^{\mu \nu}+T_{1}^{\mu \nu} \tau+T_{2}^{\mu \nu} \tau^{2}+\ldots$

Conclusions

- We have performed an exact analytical calculation of the covariance of the energy momentum tensor of the Glasma at $\tau=0^{+}$, in the framework of the Color Glass Condensate.
- We expect to be able to generalize this framework by introducing an impact parameter dependence and relaxing some of the original assumptions, which could potentially open the door to phenomenological applications.
- The following steps are computing the time evolution of our result towards thermalization time $\tau \sim 1 / Q_{s}$, where it can serve as input for hydro QGP simulations.

Thanks for your attention

Back-up: Expressions of two first orders of Nc expansion

- Leading order:

$$
\begin{array}{r}
{\left[\operatorname{Cov}\left[\epsilon_{\mathrm{Mv}}\right]\left(0^{+} ; x_{\perp}, y_{\perp}\right)\right]_{N_{c}^{0}}=\frac{1}{4 g^{4} r^{8}} e^{-\frac{r^{2}}{2}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)}\left(128+128\left(e^{\frac{Q_{s 1}^{2} r^{2}}{2}}+e^{\frac{Q_{s r^{2}}^{2} r^{2}}{2}}\right)\right.} \\
-\left[256 e^{\frac{Q_{s r^{2}}^{2}}{4}}+16 e^{\frac{r^{2}}{4}\left(2 Q_{s 1}^{2}+Q_{s 2}^{2}\right)}\left(Q_{s 2}^{4} r^{4}+8 Q_{s 2}^{2} r^{2}-2 Q_{s 1}^{4} r^{4}+48\right)\right]-[1 \leftrightarrow 2] \\
-e^{\frac{r^{2}}{4}}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)\left[Q_{s 1}^{4} Q_{s 2}^{4} r^{8}+4 Q_{s 1}^{2} Q_{s 2}^{2} r^{6}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)\right. \\
\left.+128 r^{2}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)+16 r^{4}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)^{2}+1024\right] \\
\left.+8 e^{\frac{r^{2}}{2}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)}\left[-4 r^{4}\left(Q_{s 1}^{4}+Q_{s 2}^{4}\right)+Q_{s 1}^{2} Q_{s 2}^{2} r^{6}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)+80\right]\right)
\end{array}
$$

- First correction:

$$
\begin{aligned}
& {\left[\operatorname{Cov}\left[\epsilon_{\mathrm{MV}}\right]\left(0^{+} ; x_{\perp}, y_{\perp}\right)\right]_{N_{c}^{-2}}=\frac{1}{4 N_{c}^{2} g^{4} r^{8}} e^{-\frac{r^{2}}{2}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)}\left(16\left(Q_{s 1}^{2} r^{2}+Q_{s 2}^{2} r^{2}+8\right)^{2}\right.} \\
& +\left[16 Q_{s 1}^{2} r^{2}\left(8+Q_{s 1}^{2} r^{2}\right) e^{\frac{Q_{s r^{2}}^{2}}{2}}-32\left(8+Q_{s 1}^{2} r^{2}\right)\left(4+Q_{s 1}^{2} r^{2}\right) e^{\frac{Q_{s 2}^{2} r^{2}}{4}}\right]+[1 \leftrightarrow 2]
\end{aligned}
$$

$$
\begin{aligned}
& -8 e^{\frac{1}{2} r^{2}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)} r^{2}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)\left(Q_{s 1}^{2} Q_{s 2}^{2} r^{4}-4 r^{2}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)+32\right) \\
& +e^{\frac{1}{4} r^{2}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)}\left[Q_{s 1}^{4} Q_{s 2}^{4} r^{8}+4 Q_{s 1}^{2} Q_{s 2}^{2} r^{6}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)+128 r^{2}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)\right. \\
& \left.\left.+16 r^{4}\left(Q_{s 1}^{2}+Q_{s 2}^{2}\right)^{2}-1024\right]\right)
\end{aligned}
$$

Color Glass Condensate: McLerran-Venugopalan model (modified)

- We use an approximation of QCD for high gluon densities where we replace the gluons with a classical field generated by the valence quarks

- Dynamics of the field described by Yang-Mills classical equations:

$$
\left[D_{\mu}, F^{\mu \nu}\right]=J^{\nu} \propto \rho(x)
$$

- Calculation of observables: average over background classical fields
- Basic building block: (generalized) 2-point correlator $N_{o_{n-G_{a u s s i a n i t i e s ~}}}$

$$
\left\langle\rho^{a}\left(x^{-}, x_{\perp}\right) \rho^{b}\left(y^{-}, y_{\perp}\right)\right\rangle=\mu^{2}\left(x^{-}\right) h\left(b_{\perp}\right) \delta^{a b} \delta\left(x^{-}-y^{-}\right) f\left(x_{\perp}-y_{\perp}\right)
$$

Back-up: More about the Color Glass Condensate

- Separation of 'slow' and 'fast' degrees of freedom

- Dynamic relation given by solution to classical Yang-Mills equations:

$$
\left[D_{\mu}, F^{\mu \nu, a}\right]=J^{\nu, a}
$$

- Calculation of observable quantities: average over color sources

$$
\langle\mathcal{O}\rangle=\int[D \rho] W_{\Lambda}[\rho] \mathcal{O}[\rho]
$$

- Scale (in)dependence: JIMWLK equations

$$
\frac{\partial W_{\Lambda}}{\partial \log \Lambda}=\mathcal{H} W_{\Lambda}
$$

- McLerran-Venugopalan model: W_{Λ} is a Gaussian distribution

$$
\left\langle\rho^{a}\left(x^{-}, x_{\perp}\right) \rho^{b}\left(y^{-}, y_{\perp}\right)\right\rangle=\mu^{2}\left(x^{-}\right) \delta^{a b} \delta^{2}\left(x_{\perp}-y_{\perp}\right) \delta\left(x^{-}-y^{-}\right)
$$

