Z production in p-Pb collisions at $\sqrt{s_{_{\rm NN}}}=8.16~{\rm TeV}$ with ALICE

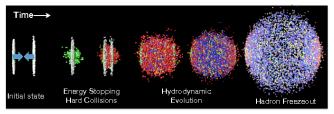
GUILLAUME TAILLEPIED LPC - UNIVERSITÉ CLERMONT-AUVERGNE g.taillepied@cern.ch

OPHÉLIE BUGNON SUBATECH - UNIVERSITÉ DE NANTES ophelie.bugnon@cern.ch

QGP-France – July 3rd, 2018

Overview

Topic: evaluate the production cross-section of the Z boson in heavy-ion collisions (p–Pb and Pb–p) $\sqrt{s_{_{\rm NN}}} = 8.16$ TeV.


Goal: study the nuclear effects and constrain the nuclear partonic distribution functions.

Content :

- theory and experimental context,
- kinematics of the Z in HIC,
- data processing and signal extraction,
- efficiency factor,
- results, discussion and perspectives.

Heavy-ion collisions

initial state effects \rightarrow QGP effects \rightarrow final state effects

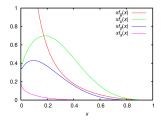
Experimental study of nuclear effects at colliders:

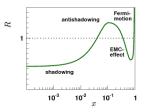
- ► p-p,
- ► p–A,
- ► A–A.

Nuclear effects:

- hot (QGP induced),
- cold (the others).

Need to disentangle hot and cold for QGP study.

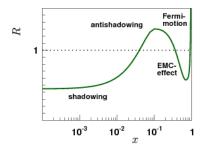

Nuclear partonic distribution function


Partonic distribution function (PDF): probability of finding a parton carrying a fraction x of the total momentum at an energy Q^2 .

Expect a difference between the PDF of a bound nucleon and the PDF of a free one (proton):

$$R(x,Q^2) = rac{f_{nuclear}(x,Q^2)}{f_{proton}(x,Q^2)}$$

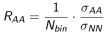
Nadolsky, PR, D78 (2008)



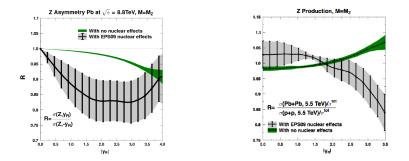
Paukkunen et Salgado, JHEP, 3 (2011)

Nuclear effects

Fermi motion: dynamics of the nucleons in the nucleus. **EMC effets**: not yet fully understood, believed to come from the modification of the characteristics of the nucleon (radius and mass) when it is bound in a nucleus, as well as multi-nucleons effects. **Shadowing** and **anti-shadowing**: constructive or destructive interferences of amplitudes due to multiple scatterings between partons in the nucleus.



Paukkunen et Salgado, JHEP, 3 (2011)


Nuclear modification factor

Key measurement in HIC: nuclear modification factor R_{AA} , ratio between the production cross-section in HIC to the one in proton–proton:

 $R_{AA} \neq 1$ points to nuclear modifications.

Paukkunen and Salgado, JHEP, 3 (2011)

Z in heavy-ion collisions I

Z known to a high degree of precision.

 Mass M_Z (GeV)
 Width Γ_Z (GeV)
 Leptonic decay (%)

 91.1876 \pm 0.0021
 2.4952 \pm 0.0023
 3.3658 \pm 0.0023

In HIC : LO Drell-Yan process:

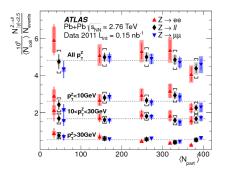
$$q\bar{q}
ightarrow Z/\gamma^*
ightarrow \mu^+\mu^-$$

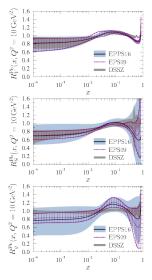
Cross-section:

 $\sigma_{AB} = \sum_{q} \frac{4\pi e_q^2 \alpha^2}{9\hat{s}} f_q(x_1, Q^2) f_{\bar{q}}(x_2, Q^2)$

Z and muons:

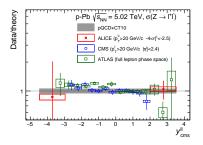
- insensitive to strong interaction,
- EM interactions negligible (Conesa, EPJ C 61(4), 2009),
- insensitive to final state effects.

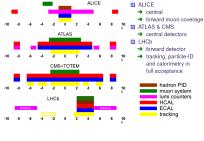

 \Rightarrow probe of the initial state, comparison between p–p, p–Pb and Pb–Pb

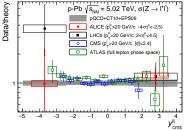

Z in heavy-ion collisions II

- probe of the PDF modifications,
- calibration of muons and electrons detectors,
- estimator of the collision centrality.

ATLAS, PRL, 110 (2013)

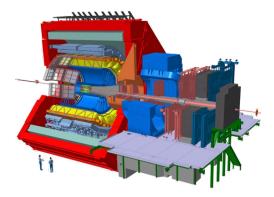

Eskola et al, EPJ, C77 (2017)


Z analysis at $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV

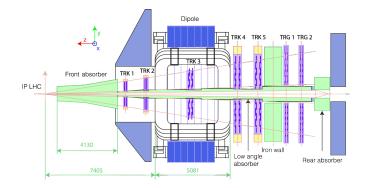


Z production measured by the four main LHC experiments, at various geometrical coverages.

At $\sqrt{s_{_{\rm NN}}} = 5.02 \text{ TeV}$, unable to disentangle between CT10 (PDF) and CT10+EPS09 (nPDF).



ALICE: generalities



Set of detectors around the collision point: vertex position, centrality, multiplicity, collision time...

Central barrel: hadrons, electrons and photons detection. **Muon spectrometer**: weak bosons (W[±], Z), quarkonia (J/ Ψ , Υ), low mass mesons (ρ , ϕ , ω), heavy flavour hadrons (charm and beauty).

ALICE: muon spectrometer

Trigger: 18 resistive plate chambers in two stations.

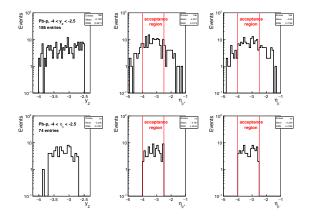
Tracking: 10 multi-wire proportional chambers, two-by-two in five stations.

Dipolar magnet: integrated field of 3 T m for charge and momentum measurements.

Absorbing system: background rejection.

p–Pb and Pb–p collisions at à $\sqrt{s_{_{\rm NN}}} = 8.1624 \,\text{TeV}$. 100,000 events for each configuration. Process: $q\bar{q} \rightarrow Z/\gamma^* \rightarrow \mu^+\mu^-$ at leading order (PYTHIA-6). No constrain on the emission.

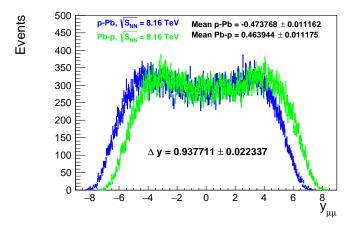
Goal: study the Z production kinematics, acceptance and background considerations.


Cuts:

- ▶ pseudo-rapidity: $-4 < \eta < -2.5$ to stay within the spectrometer acceptance,
- transverse momentum: p_T > 20 GeV c⁻¹ to reject various background sources.

Acceptance

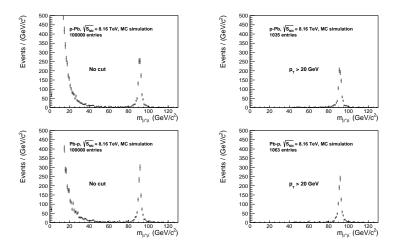
Spectrometer acceptance: $-4 < \eta < -2.5, \rightarrow$ cut on the muons pseudo-rapidity.


Decrease of the population: from 341 to 128 events in p–Pb, 186 to 74 events in Pb–p (\simeq factor 2).

Rapidity shift

Proton–lead: asymetrical collisions, $y_{cm/lab} \neq 0$. Predicted shift:

 $y = \pm 0.4654$



p_{T} cut and γ^{*} contribution

Want to get rid of $q\bar{q} \to \gamma^* \to \mu^+\mu^-$. Solution: cut on the transverse momentum, suppress γ^* .

 $\Rightarrow \gamma^*$ negligible (first approximation).

Z production cross-section in heavy-ion collisions

Z in the muon channel, with individual muon tracks within the spectrometer acceptance. Fiducial region:

$$egin{cases} -4.0 < \eta_{\mu} < -2.5, \ p_{T\mu} > 20 {
m GeV} \, {
m c}^{-1}, \ 60 < m_{\mu\mu} < 120 {
m GeV} \, {
m c}^{-2}. \end{cases}$$

Cross-section in p-Pb:Cross-section in Pb-p: $\sigma_{Z \to \mu\mu}$ (2.03 < y_{CM} < 3.53)</td> $\sigma_{Z \to \mu\mu}$ (-4.46 < y_{CM} < -2.96)</td>

Z boson production in p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV with ALICE

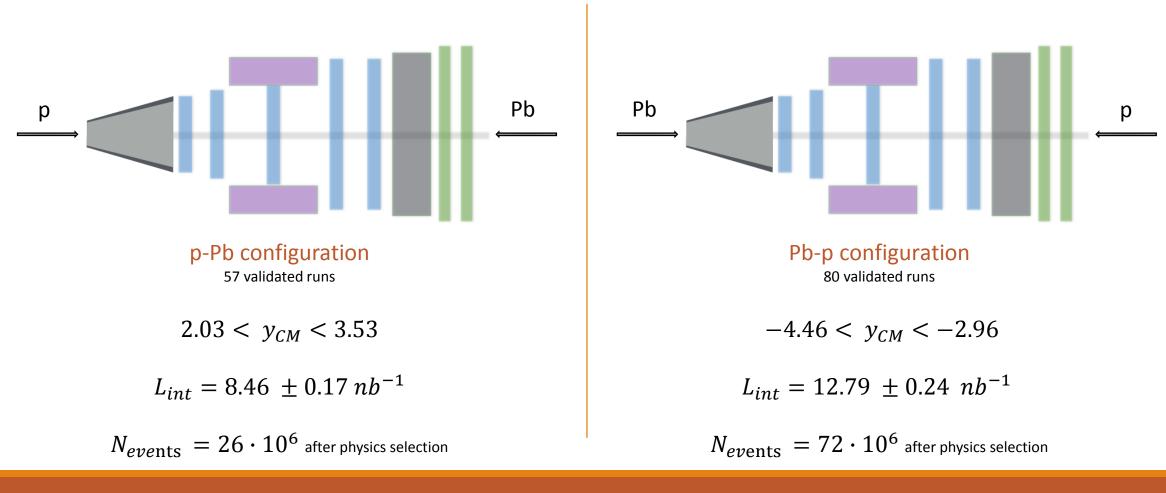
Ophelie Bugnon Subatech - Universite de Nantes ophelie.bugnon@cern.ch

Guillaume Taillepied LPC - Universite Clermont-Auvergne g.taillepied@cern.ch

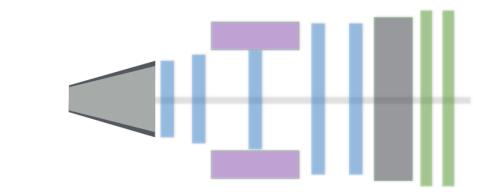
QGP-France – July 3rd, 2018

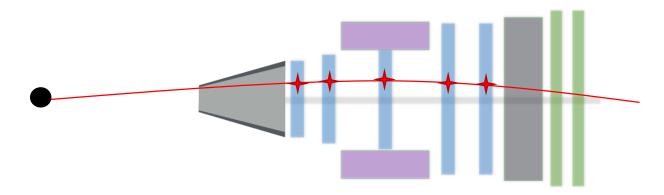
Outlook

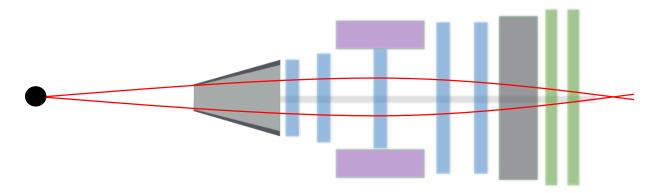
- The analysis
 - Data samples and muon track selection
 - Signal extraction
 - Background contribution
 - MC full simulation and detector efficiency
- Results
 - Two methods performed at Subatech Nantes and LPC Clermont
 - Comparison between methods
 - Comparison with theory
- Conclusion and perspectives

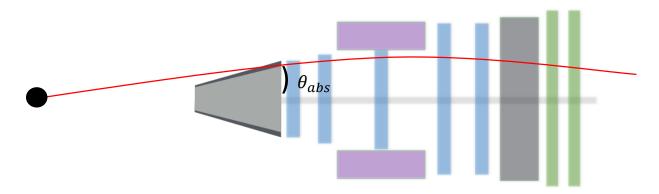


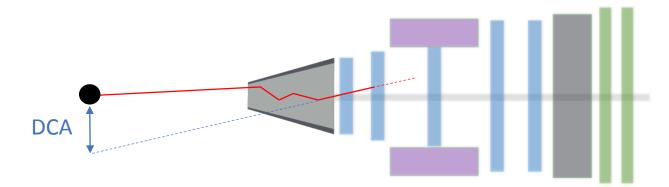
• 2 data taking periods in 2016 : p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV Trigger class : Events with two unlike sign muons with $p_T^{\mu} > 0.5$ GeV/c

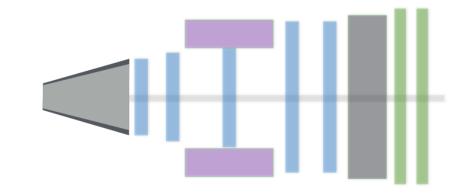

Data samples

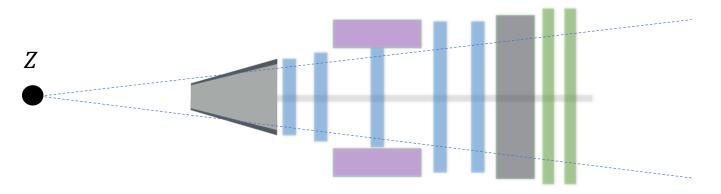

• 2 data taking periods in 2016 : p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV Trigger class : Events with two unlike sign muons with $p_T^{\mu} > 0.5$ GeV/c




- Single muon cuts :
 - ✓ Matched tracks

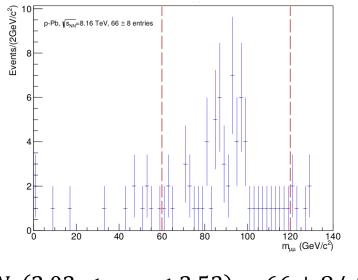

- Single muon cuts :
 - ✓ Matched tracks
 - ✓ Pseudo-rapidity : $-4 < \eta_{\mu} < -2.5$ → spectrometer acceptance

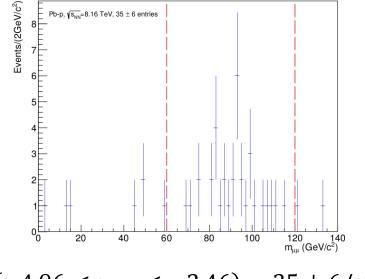

- Single muon cuts :
 - ✓ Matched tracks
 - ✓ Pseudo-rapidity : $-4 < \eta_{\mu} < -2.5$ → spectrometer acceptance
 - ✓ Angle at the end of the front absorber : $2^{\circ} < \theta_{abs} < 10^{\circ}$ → remove tracks passing through the high-Z material of the front absorber


- Single muon cuts :
 - ✓ Matched tracks
 - ✓ Pseudo-rapidity : $-4 < \eta_{\mu} < -2.5$ → spectrometer acceptance
 - ✓ Angle at the end of the front absorber : $2^{\circ} < \theta_{abs} < 10^{\circ}$ → remove tracks passing through the high-Z material of the front absorber
 - ✓ pDCA \rightarrow remove tracks which are not coming from the vertex (ex : beam-gas interactions)

- Single muon cuts :
 - ✓ Matched tracks
 - ✓ Pseudo-rapidity : $-4 < \eta_{\mu} < -2.5$ → spectrometer acceptance
 - ✓ Angle at the end of the front absorber : $2^{\circ} < \theta_{abs} < 10^{\circ}$ → remove tracks passing through the high-Z material of the front absorber
 - ✓ pDCA \rightarrow remove tracks which are not coming from the vertex (ex : beam-gas interactions)
 - ✓ Transverse momentum: $p_T(\mu) > 20 \text{ GeV}/c$ → reduce combinatorial background + muons from lower mass quarkonium states

- Single muon cuts :
 - ✓ Matched tracks
 - ✓ Pseudo-rapidity : $-4 < \eta_{\mu} < -2.5$ → spectrometer acceptance
 - ✓ Angle at the end of the front absorber : $2^{\circ} < \theta_{abs} < 10^{\circ}$ → remove tracks passing through the high-Z material of the front absorber
 - ✓ pDCA \rightarrow remove tracks which are not coming from the vertex (ex : beam-gas interactions)
 - ✓ Transverse momentum: $p_T(\mu) > 20 \text{ GeV/}c$ → reduce combinatorial background + muons from lower mass quarkonium states
- Reconstructed dimuon cuts :
 - ✓ Rapidity : $-4.0 < y_{lab} < -2.5$ → spectrometer acceptance


Signal extraction

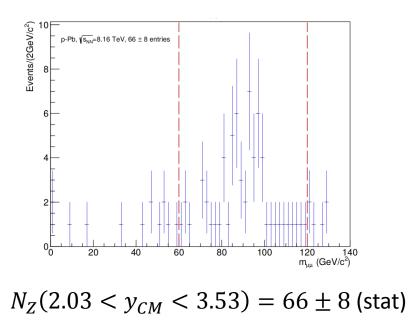

• Z^0 study in the dimuon decay channel :

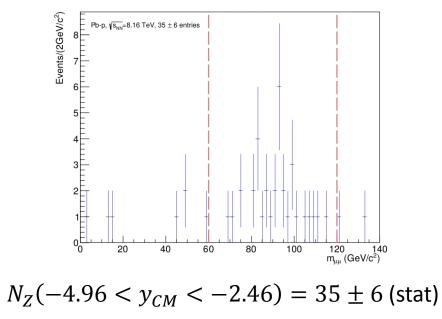
$$m_{\mu^{+}\mu^{-}} = \sqrt{m_{1}^{2} + m_{2}^{2} + 2(E_{1} \cdot E_{2} - \vec{p}_{1} \cdot \vec{p}_{2} \cdot \cos\theta_{12})}$$

• Signal extracted in the invariant mass range : $60 < m_{\mu\mu} < 120 \text{ GeV}/c^2$

 $N_Z(2.03 < y_{CM} < 3.53) = 66 \pm 8$ (stat)

 $N_Z(-4.96 < y_{CM} < -2.46) = 35 \pm 6$ (stat)


Signal extraction



• Z^0 study in the dimuon decay channel :

$$m_{\mu^{+}\mu^{-}} = \sqrt{m_{1}^{2} + m_{2}^{2} + 2(E_{1} \cdot E_{2} - \vec{p}_{1} \cdot \vec{p}_{2} \cdot \cos\theta_{12})}$$

• Signal extracted in the invariant mass range : $60 < m_{\mu\mu} < 120 \text{ GeV}/c^2$

• Lower kinematic acceptance of the Z cross section at backward rapidity.

p_T cut on single muons tracks should make the background contribution very small.

- Possible sources:
 - Semi-leptonic decays from $b\overline{b}$ and $c\overline{c}$
 - Process $t\bar{t} \rightarrow \mu\mu$
 - Process $Z \rightarrow \tau \overline{\tau} \rightarrow \mu \mu$

p_T cut on single muons tracks should make the background contribution very small.

- Possible sources:
 - Semi-leptonic decays from $b\overline{b}$ and $c\overline{c}$
 - Process $t\bar{t} \rightarrow \mu\mu$
 - Process $Z \rightarrow \tau \overline{\tau} \rightarrow \mu \mu$

 \rightarrow Z boson production analysis in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV showed these contributions are negligible in the signal region.

• p-Pb and Pb-p collisions at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$

POWHEG : Generator for the process $q\bar{q} \rightarrow Z/\gamma^* \rightarrow \mu^+\mu^-$

- ✓ With NLO contributions
- ✓ EPS09 : nPDF set used for nuclear effects

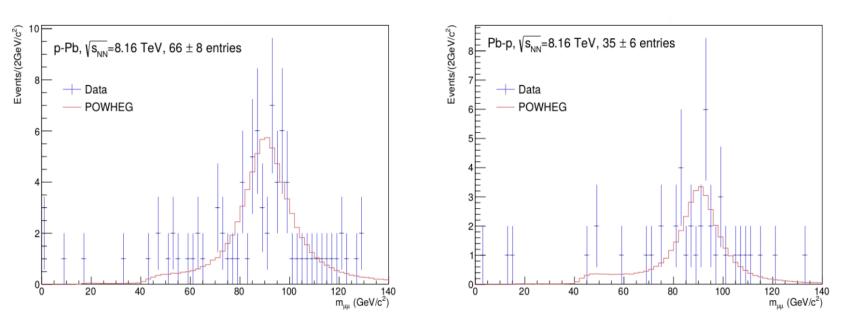
Pythia6 : shower Monte-Carlo program

GEANT3 : particle transport in the detector geometry

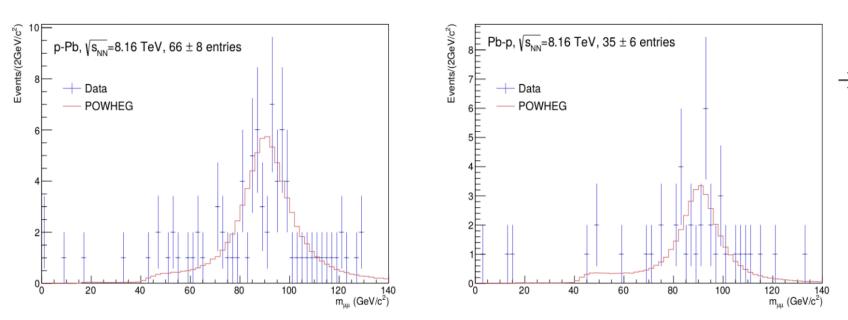
• p-Pb and Pb-p collisions at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$

POWHEG : Generator for the process $q\bar{q} \rightarrow Z/\gamma^* \rightarrow \mu^+\mu^-$

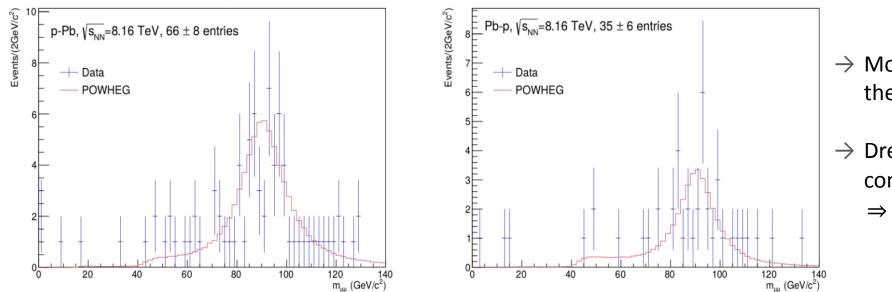
- ✓ With NLO contributions
- ✓ EPS09 : nPDF set used for nuclear effects

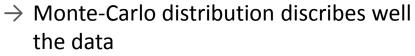

Pythia6 : shower Monte-Carlo program

GEANT3 : particle transport in the detector geometry


- Set up
 - ✓ Generation in the fiducial region of the muon spectrometer : $-4.0 < y_{lab} < -2.5$
 - $\checkmark \ p_T$ cut on the single muons : $p_T(\mu) > 10~{
 m GeV}/c \ o$ reduce the γ^* contribution

- *Z* reconstructed from the simulation
 - ✓ With the muon track selection
 - \checkmark With the resolution of the tracking system
- Number of generated events normalized to data


- Z reconstructed from the simulation
 - ✓ With the muon track selection
 - ✓ With the resolution of the tracking system
- Number of generated events normalized to data



 \rightarrow Monte-Carlo distribution discribes well the data

- *Z* reconstructed from the simulation
 - ✓ With the muon track selection
 - \checkmark With the resolution of the tracking system
- Number of generated events normalized to data

→ Drell-Yan process seems to be the only contribution $40 < m_{\mu\mu} < 60 \text{ GeV}/c^2$ ⇒ Background negligible in Z mass range

Detector efficiency

• Efficiency computed run by run from the simulation : $\epsilon =$

Reconstruction :

- \checkmark With the muon track selection
- \checkmark With and without cluster resolution \rightarrow systematic on the efficiency

Nrec

Ngen

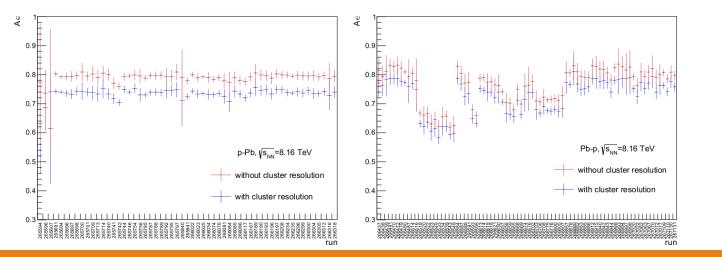
Generated Z :

 $\checkmark~$ With two muons in the acceptance $-4 < \eta_{\mu} < -2.5$

Detector efficiency

• Efficiency computed run by run from the simulation : $\epsilon =$

Reconstruction :


- ✓ With the muon track selection
- \checkmark With and without cluster resolution \rightarrow systematic on the efficiency

N_{rec}

Ngen

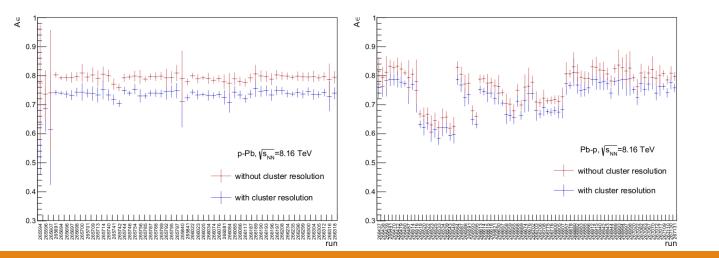
Generated Z :

- $\checkmark~$ With two muons in the acceptance $-4 < \eta_{\mu} < -2.5$
- Efficiency extracted in the invariant mass range $60 < m_{\mu\mu} < 120 \text{ GeV}/c^2$

Detector efficiency

• Efficiency computed run by run from the simulation : ϵ

Reconstruction :


- ✓ With the muon track selection
- \checkmark With and without cluster resolution \rightarrow systematic on the efficiency

Nrec

Ngen

Generated Z :

- $\checkmark~$ With two muons in the acceptance $-4 < \eta_{\mu} < -2.5$
- Efficiency extracted in the invariant mass range $60 < m_{\mu\mu} < 120 \text{ GeV}/c^2$

Efficiency over the full period as the average weighted by the number of unlike sign dimuon events by run

$$\varepsilon(2.03 < y_{CM} < 3.53) = 0.76 \pm 0.04$$
 (syst)
 $\varepsilon(-4.46 < y_{CM} < -2.96) = 0.74 \pm 0.03$ (syst)

$$\sigma_{Z \to \mu \mu} = \frac{N_Z}{L_{int} \cdot \epsilon}$$

• Cross section given in the fiducial region

$$\begin{cases} -4 < \eta_{\mu} < -2.5 \\ p_T(\mu) > 20 \text{ GeV/}c \\ 60 < m_{\mu\mu} < 120 \text{ GeV/}c^2 \end{cases}$$

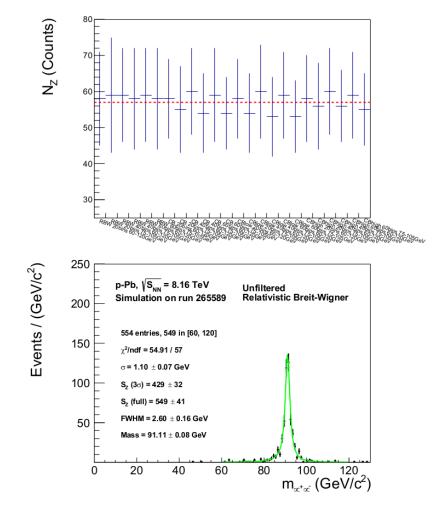
$$\sigma_{Z \to \mu \mu} = \frac{N_Z}{L_{int} \cdot \epsilon}$$

• Cross section given in the fiducial region

$$\begin{cases} -4 < \eta_{\mu} < -2.5 \\ p_T(\mu) > 20 \text{ GeV/}c \\ 60 < m_{\mu\mu} < 120 \text{ GeV/}c^2 \end{cases}$$

 $\sigma_{Z \to \mu\mu}(2.03 < y_{CM} < 3.53) = 10.26 \pm 1.25$ (stat) ± 0.62 (syst) nb $\sigma_{Z \to \mu\mu}(-4.46 < y_{CM} < -2.96) = 3.71 \pm 0.63$ (stat) ± 0.18 (syst) nb

- Statistical error from the number of *Z* candidates
- Systematic error is the quadratic sum of the different sources : luminosity, cluster resolution, efficiency of the tracking, trigger and matching


• Track selection : same as the first method

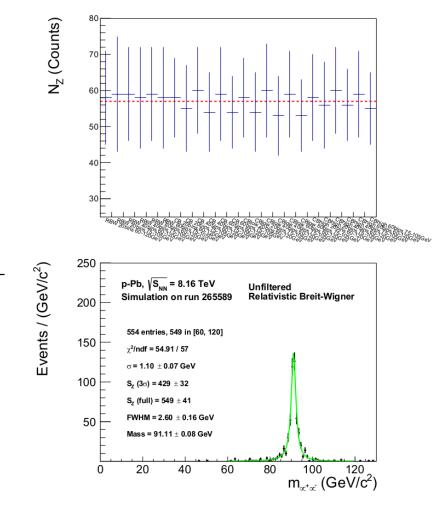
Results on the cross section : second method at LPC

ALICE

- Track selection : same as the first method
- Signal extraction

Z boson invariant mass distribution is fitted in the range $60 < m_{\mu\mu} < 120 \text{ GeV}/c^2$ with two functions : relativistic Breit-Wigner and extended Crystal Ball

Results on the cross section : second method at LPC


- Track selection : same as the first method
- Signal extraction

Z boson invariant mass distribution is fitted in the range $60 < m_{\mu\mu} < 120 \text{ GeV}/c^2$ with two functions : relativistic Breit-Wigner and extended Crystal Ball

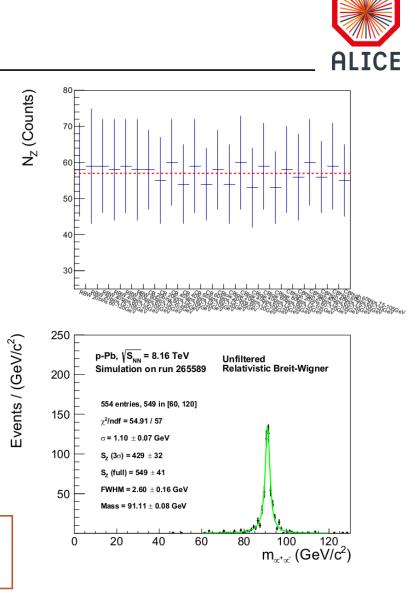
• Full simulation : for the first and last run of each period

pythia6 : shower MC program and generator for the process $q\bar{q} \rightarrow Z \rightarrow \mu^+\mu^-$

- ✓ With LO contributions
- ✓ CTEQ5L : nPDF set used for nuclear effects

Results on the cross section : second method at LPC

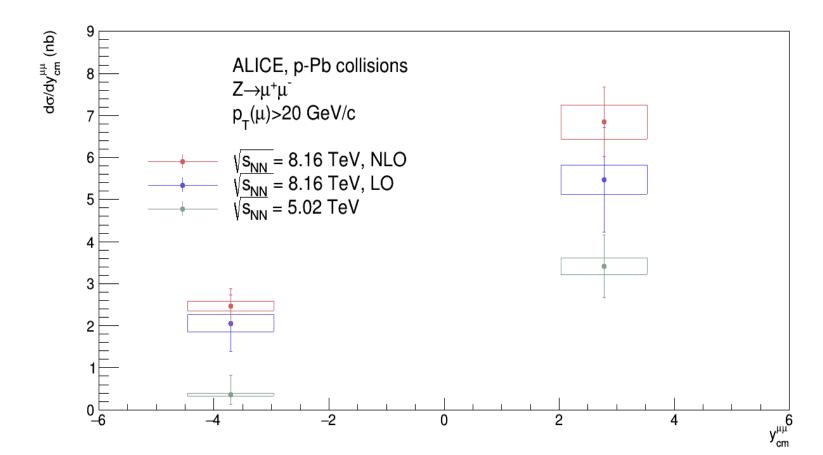
- Track selection : same as the first method
- Signal extraction

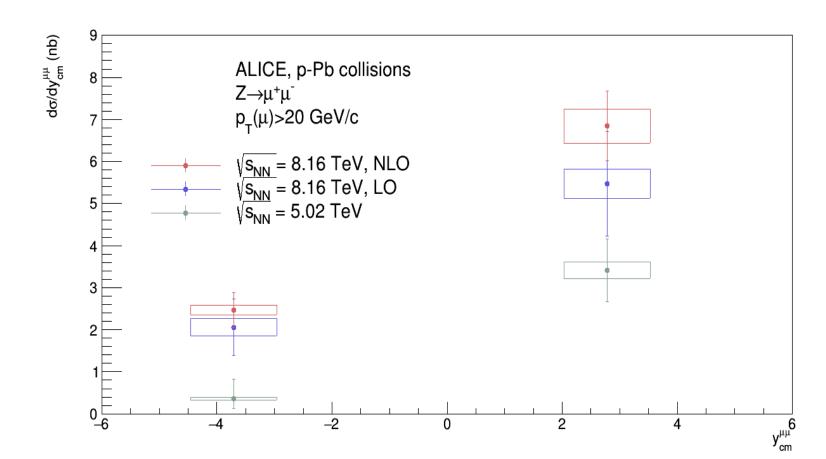

Z boson invariant mass distribution is fitted in the range $60 < m_{\mu\mu} < 120 \text{ GeV}/c^2$ with two functions : relativistic Breit-Wigner and extended Crystal Ball

Full simulation : for the first and last run of each period

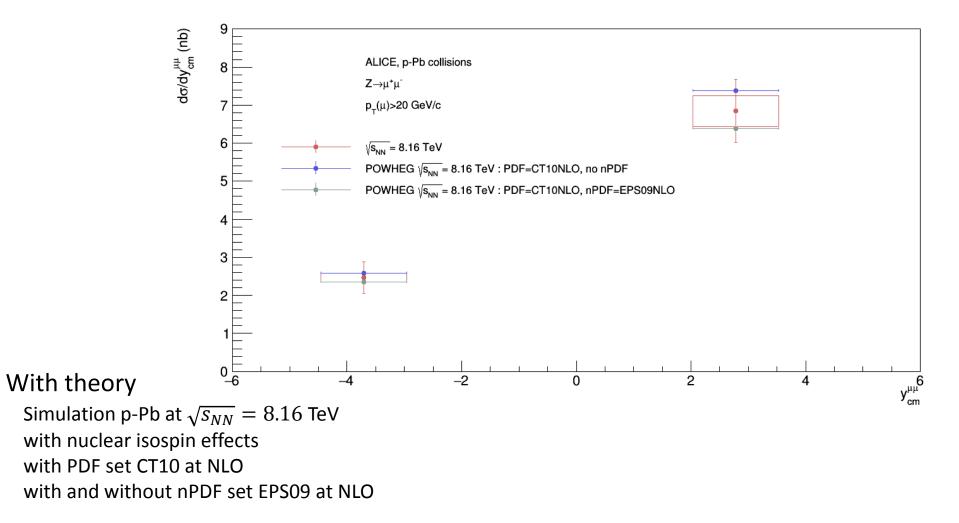
pythia6 : shower MC program and generator for the process $q\bar{q} \rightarrow Z \rightarrow \mu^+\mu^-$

- ✓ With LO contributions
- ✓ CTEQ5L : nPDF set used for nuclear effects
- Results

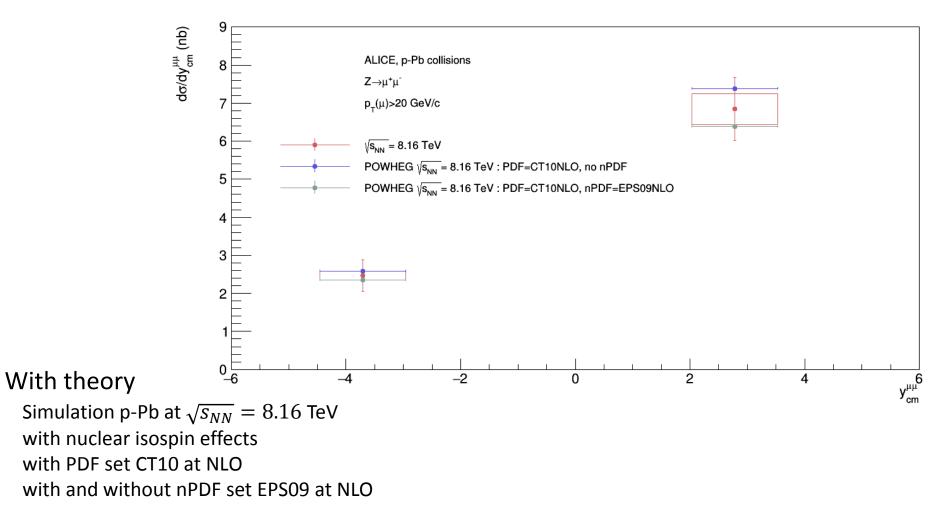

 $\sigma_{Z \to \mu\mu}(2.03 < y_{CM} < 3.53) = 8.21 \pm 1.95 \text{ (stat)} \pm 0.53 \text{ (syst)} \text{ nb}$ $\sigma_{Z \to \mu\mu}(-4.46 < y_{CM} < -2.96) = 3.09 \pm 1.02 \text{ (stat)} \pm 0.30 \text{ (syst)} \text{ nb}$


• Between the two methods

✓ Agreement within statistical errors



- Between the two methods
 - ✓ Agreement within statistical errors
- With data from p-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - Increase of the cross section with energy at forward and backward rapidities
 - ✓ Higher precision


Results comparison

Results comparison

✓ Good agreement with the theory

✓ Cross section $\sigma_{Z \to \mu\mu}$ measured in both rapidity ranges for p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

- ✓ Cross section $\sigma_{Z \to \mu\mu}$ measured in both rapidity ranges for p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV
- ✓ Good agreement between data and theory

- ✓ Cross section $\sigma_{Z \to \mu\mu}$ measured in both rapidity ranges for p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV
- ✓ Good agreement between data and theory
- ✓ Higher precision with respect to 5.02 TeV but not enough to discriminate between models

- ✓ Cross section $\sigma_{Z \to \mu\mu}$ measured in both rapidity ranges for p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV
- ✓ Good agreement between data and theory
- ✓ Higher precision with respect to 5.02 TeV but not enough to discriminate between models

• More statistics → LHC-run3 ?

- ✓ Cross section $\sigma_{Z \to \mu\mu}$ measured in both rapidity ranges for p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV
- ✓ Good agreement between data and theory
- ✓ Higher precision with respect to 5.02 TeV but not enough to discriminate between models

- More statistics → LHC-run3 ?
- Checks of the background contribution

- ✓ Cross section $\sigma_{Z \to \mu\mu}$ measured in both rapidity ranges for p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV
- ✓ Good agreement between data and theory
- ✓ Higher precision with respect to 5.02 TeV but not enough to discriminate between models

- More statistics → LHC-run3 ?
- Checks of the background contribution
- Theoretical predictions with different sets of nPDF to constrain nuclear models

- ✓ Cross section $\sigma_{Z \to \mu\mu}$ measured in both rapidity ranges for p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV
- ✓ Good agreement between data and theory
- ✓ Higher precision with respect to 5.02 TeV but not enough to discriminate between models

- More statistics → LHC-run3 ?
- Checks of the background contribution
- Theoretical predictions with different sets of nPDF to constrain nuclear models
- Comparison with results from p-p and study of the nuclear modification factor R_{pPb}

- ✓ Cross section $\sigma_{Z \to \mu \mu}$ measured in both rapidity ranges for p-Pb collisions at $\sqrt{s_{NN}} = 8.16$ TeV
- ✓ Good agreement between data and theory
- ✓ Higher precision with respect to 5.02 TeV but not enough to discriminate between models

- More statistics → LHC-run3 ?
- Checks of the background contribution
- Theoretical predictions with different sets of nPDF to constrain nuclear models
- Comparison with results from p-p and study of the nuclear modification factor R_{pPb}
- Study of the Drell-Yan continium \rightarrow possible for the run3 with the future Muon Forward Tracker (MFT)

Thank you for listening

• Integrated luminosity corresponding to unlike sign dimuon events

$$L_{int} = \frac{N_{MB}}{\sigma_{MB}}$$

- Minimum bias cross section σ_{MB} estimated by a Van-der-Meer scan
- Number of minimum bias events N_{MB} associated to the number of unlike sign dimuon events $N_{MB} = F_{Norm} \cdot N_{CMUL}$

	N _{CMUL}	N _{MB}	σ_{MB} (b)	L _{int} (nb⁻¹)
$2.03 < y_{CM} < 3.53$	25.87∙ 10 ⁶	17.67· 10 ⁹	$2.09 \pm 0,04$ (syst)	$8.46 \pm 0,17$ (syst)
$-4.46 < y_{CM} < -2.96$	72.17· 10 ⁶	26.87·10 ⁹	2.10 ± 0.04 (syst)	12.79 ± 0,24 (syst)

Statistic error neglected over the sytematic error

As a percentage of the cross section

	Cluster resolution	Tracking efficiency	Trigger efficiency	Matching efficiency	Luminosity
$2.03 < y_{CM} < 3.53$	5.3 %	1 %	1%	1 %	2 %
$-4.46 < y_{CM} < -2.96$	4.1 %	2 %	1%	1 %	1.9 %

The tracking, trigger and matching efficiencies are taken from the Y analysis at $\sqrt{s_{NN}} = 8.16$ TeV