QCD "froide": parton densities and correlations and other effects not related to deconfinement

Slides by:

Edmond Iancu, Astrid Morreale, Hugo Pereira, Michael Winn

working group discussions with:

Carlos Munoz, Francesco Bossù, Cyrille Marquet, Raphaël Granier de Cassagnac, François Arleo, Cynthia Hadjidakis

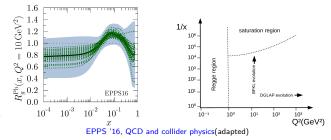
profitting from ongoing work in Yellow Report and Physics Beyond Colliders discussions

Outline

Motivation

Current knowledge from HERA, RHIC and LHC

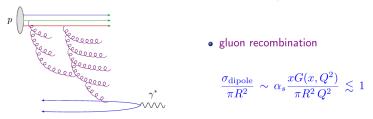
► EIC


HL-LHC

Not comprehensive:

 \to focus on QGP-related topics and current perspective/interests \to often observables can be recasted also in different contexts as here

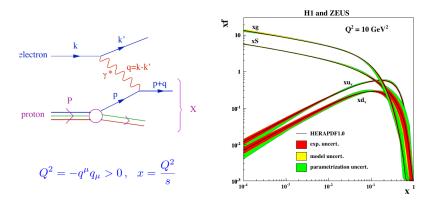
Motivation: partonic structure, initial stage & more of ion-ion


nuclear parton density and correlations poorly known

- low-x: probe non-linear regime of QCD, so far not ambiguously observed → Color Glass Condensate: eff. field theory in the weak coupling limit → non-trivial emergent phenomena
- other effects as coherent energy loss
- ▶ initial conditions for QGP physics: one of largest uncertainties
 - ightarrow nuclear partons over full Q^2, x : densities, fluctuations and correlations
 - ightarrow low-x: bulk particle and low p_T heavy-flavour production

► QGP & saturation physics: 'background' for each other Etretat 2018 low-x/nPDF 2/42

Introduction: the small-*x* problem


• Bremsstrahlung favors soft (low energy, or small $x \equiv \frac{k_z}{p_z} \ll 1$) gluons:

- All-order resummations of gluon ladders (BFKL) lead to an explosive growth
- Cross-sections are proportional to parton distributions: unitarity violations
- The natural mechanism to stop this growth: gluon saturation
- The modern theory for gluon saturation: Color Glass Condensate
 - non-linear generalization of the BFKL dynamics
 - currently known to next-to-leading order in pQCD

	Getting to Grips with QCD	Gluon saturation and the CGC	Edmond lancu	2 / 39
--	---------------------------	------------------------------	--------------	--------

Parton distributions from DIS

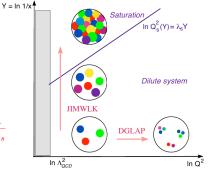
- Gluon distribution $xG(x,Q^2) \equiv x \frac{dN}{dx}$: # of gluons with longitudinal momentum fraction x and transverse size $\Delta x_{\perp} \sim 1/Q$
- For $x \leq 0.01$ the proton wavefunction contains mostly gluons

Getting to Grips with QCD Gluon saturation and the CGC Edmond	lancu 3 / 39
---	--------------

Etretat 2018 low-x/nPDF

Gluon evolution at small x

• Gluon occupation number: $n(x,Q^2) \simeq \frac{xG(x,Q^2)}{\pi R^2 Q^2}$ • Non-linear evolution (BK-JIMWLK) $\frac{\partial n}{\partial Y} = \alpha_s n - \alpha_s^2 n^2 \sim 0 \text{ when } n \sim \frac{1}{\alpha_s}$ $\ln \Lambda_{ax}^2$


• Saturation momentum: $n(x,Q^2) \sim 1/\alpha_s$ when $Q^2 = Q_s^2(x)$

$$Q_s^2(x) \simeq \alpha_s \frac{xG(x,Q_s^2)}{\pi R^2} \sim \frac{1}{x^{\lambda_s}}$$

• $Q_s(x)$ rises with the energy (i.e. with decreasing x)

Getting to Grips with QCD

Gluon saturation and the CGC

Initial state in view of QGP physics

Quarkonium vector state

 two factorisation steps in pp
 deconfinement: redistribution in phase space and total rate

Open beauty/charm

 two factorisation steps in pp
 deconfinement: redistribution in phase space and potentially chemistry at time ofhadronisation

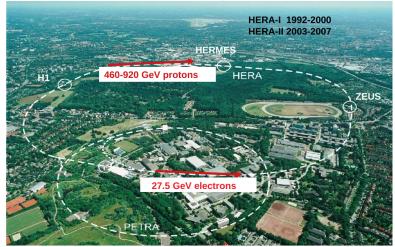
Total charm/beauty including baryons

 one factorisation step in pp
 phase space integrated conserved after initial hard scattering

Drell Yan at quarkonium production scale

one factorisation step in pp
 no redistribution in phase space

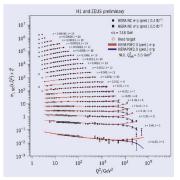
Most easily accessible in experiment Strongly sensitive to deconfinement Theoretically a lot of modelling


Most difficult experimentally No sensitivity to deconfinement Theoretically most straightforward

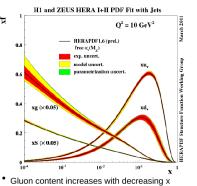
example for heavy-flavour arxiv:1609.01135

- QGP physics at the LHC & beyond: extract matter properties
- understanding of effects that are usually tried to be elimimated: initial state one of limiting factors
- chance at high energy in 'canonical' picture:
 - 1) time scales: crossing \rightarrow shortest scale
 - 2) eff. field theory for initial state
 - 3) lattice QCD@ $\mu_B = 0$: thermal properties
- precision required: large statistics prerequisite

Current knowledge from HERA, RHIC and LHC

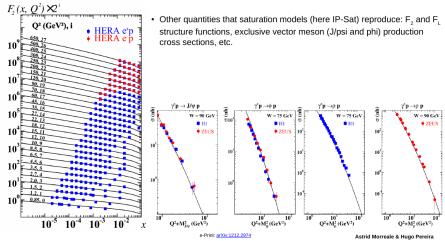

HERA's Legacy

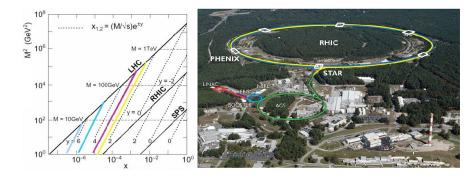
HERA: Hadron Elektron Ring Anlage


Astrid Morreale & Hugo Pereira

HERA's Legacy

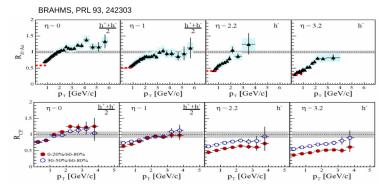
Proton structure at high-energy is:


- Far from elementary
- Gluon-dominated for x < 0.1


- Gluons pose a number of questions
- HERAPDF2.0: 15 parameters, ~1400 combined data points

PoS EPS-HEP2011 (2011) 320 arXiv:1112.2107 and http://cerncourier.com/cws/article/cern/60160 Astrid Morreale & Hugo Pereira

Saturation at HERA?

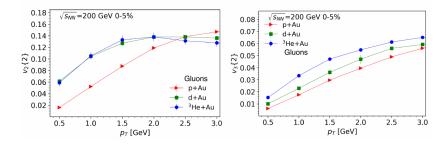

RHIC

Saturation physics at RHIC?

Astrid Morreale & Hugo Pereira

Forward particle production in d+Au collisions

Sizable suppression in charged hadron production in d+Au collisions relative to p+p collisions at forward rapidity.

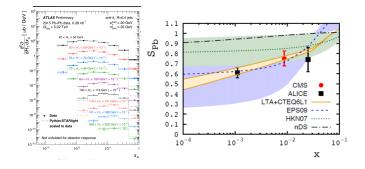

BRAHMS PHENIX and PHOBOS reported similar effects

However, at the LHC at midrapidity similar x-values probed and no strong suppression Astrid Morreale & Hugo Pereira

LHC in Run 1 and 2

LHC: correlations in pp, pA

System size dependence at RHIC captured by CGC initial state gluon correlations



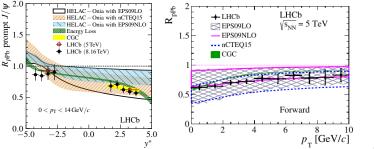
Mark Mace at QM '18

- > pp ridge: first LHC-discovery, initially seen in view of saturation physics
- developments in recent years to interpret in hydro, initial state and one-touch approaches/transport
 - \rightarrow quest still open, see small systems talk
 - \rightarrow fundamental for basic understanding of heavy-ion physics

 \rightarrow requires more studies: not necessarily lumi, but ideas and hence time $_{\rm Etretat\ 2018\ low-x/nPDF}$ $$_{14/42}$$

LHC as γ -hadron collider: QCD in Ultra-peripheral collisions

ATLAS-CONF-2017-011, right compilation provided by E. Kryshen.

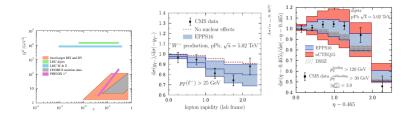

coherent vector mesons: more and more results, start to exploit γA over γp to cancel part of non-perturbative uncertainties on theory side

first inclusive dijets just becoming available:

to be seen how far systematics can be pushed

15/42

LHC: Heavy-flavour production


- hard scale via mass, large potential for constraints down to low-x: 10⁻⁵, but energy loss could be main effect
- ► universal factorisation broken in quarkonia & universal fragmentation broken in heavy-flavour (latter however in pPb ≈ pp)

 \rightarrow to be understood both for low-x and QGP physics

- updates with higher statistics still to come: beauty data down to low-p_T and with better baryon results
- excited states and beauty will eventually remain limited in discriminative power with available data

Involvement of multiple French groups: interface with treheavy-flavour/quarkonia

LHC: W, Z, Dijets as nPDF constraints

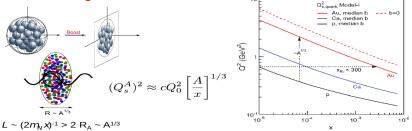
- clean probes at high Q² with Run 1 data, will be updated with larger Run 2 data
- Iimited in kinematic reach down to low-x, need high-precision

Involvement of CMS heavy-ions: interface with high- p_T

Future opportunities

Hadron and lepton-hadron colliders

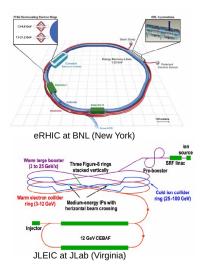
- ► Hadron machines, see summary by Yen-Jie Lee at HL-LHC workshop: → "HL"-LHC: Run 3 & Run 4, till ≈ 2030 approved dedicated PbPb, pPb and pp programme in the 20ies → HL-LHC beyond Run 4 after 2030: ions runs to be seen lighter ions attractive mainly to go to higher luminosities: factor 20-100
- ▶ Lepton-hadron machines: → Electron-ion collider, possible physics start ≈ 2030: priority project of the nuclear US community: spin, TMD, GPD & low-x LHeC: desirable for low-x, usually considering ALICEs IP2


Etretat 2018 low-x/nPDF

19/42

How to explore/study the saturation regime of QCD?

(multi-TeV) e-p collider (LHeC) OR a (multi-10s GeV) e-A collider


Advantage of nucleus

Enhancement of Q_s with A:

Saturation regime reached at significantly lower energy (read: "cost") in nuclei. Also: saturation a priori claimed to be observed in pA collisions (RHIC, LHC), but eA is cleaner since one of the probe is leptonic and the kinematics is under better control.

13

EIC

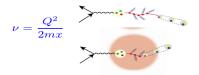
-There are two proposals for building the machine.

-As of today it is not yet decided where it will be built.

eRHIC:

- Upgrade of RHIC hadron beam facility
- Addition of a recirculating electron ring
- electron-proton: 5-18 GeV on up to 275 GeV
- electron-ion: 5-18 GeV on 100 GeV (Pb)

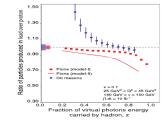
JLEIC:


- Upgrade of CEBAF 12 GeV electron beam facility
- Addition of a new hadron injector
- electron-proton: 3-12 GeV on 40 GeV
- 100-400 GeV with new to be proven magnet technology (up to 12 T)
- electron-ion: 3-12 GeV on 40 GeV (Pb)

Astrid Morreale & Hugo Pereira

Emergence of Hadrons from Partons

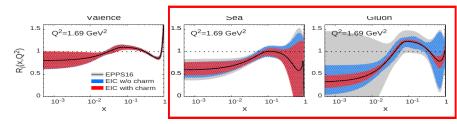
Nucleus as a Femtometer sized analyzer


v: the virtual photon energy range

Control of ν by selecting kinematics; The nuclear size is also under control

Colored quark emerges as color neutral hadron What is the impact of colored media on confinement?

Energy loss by light vs. heavy quarks:


Identify light vs. charm hadrons in e-A: Understand energy loss of light vs. heavy quarks in cold nuclear matter.

Provides insight into energy loss in the Quark-Gluon Plasma

DIS at collider energies enables control of parton/event kinematics

17

EIC: impact on the knowledge of 1D Nuclear PDFs

Ratio of Parton Distribution Functions of Pb over Proton:

- · -Grey: Without EIC, large uncertainties in nuclear sea quarks and gluons
- -Colored: With EIC significantly reduced uncertainties
- · Complementary to RHIC and LHC pA data.
- · Provides information on initial state for heavy ion collisions.
- Does the nucleus behave like a proton at low-x? (question for EIC)

Users within Europe

map based on mailing list: open for all interested people French groups: Saclay (CEA), Orsay (CNRS) and IGDORE-RONIN (Astrid)

Astrid Morreale & Hugo Pereira

Page 22

HL-LHC: schedule, luminosities, overview

					2027	2028	2029	2030
2019	2020	2021	2022		LULI	LOLO	2020	2000
00 00 00 00 00 00 00 00 00 00 00 00 00		10		50 2	P0	βp		
LS 2: major ALICE and LHCb upgrades Run 3					Run 4			LHCb Phase II →
LS 2: major ALICE and LHCb upgrades Run 3								
					- 2	028	2029	2030
2023	2024	2025	2026			IVEO	EGEO	2000
69			100					
Run 3	Run 3 LS 3: major ATLAS & CMS upgrades for LHC Phase 2 Run 4 EIC completion Comissioning and physics at EI						nd physics at EIC	

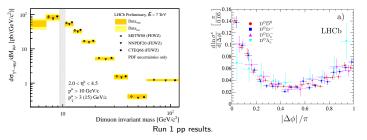
Run 3/4: luminosities in pPb 0.5-2 pb⁻¹ for ATLAS/CMS/ALICE, LHCb factor 3-10 less 5-10 more wirt Run 2 at 8.8 TeV: significant improvements to be

 $5\text{-}10\ \text{more}\ \text{w.r.t.}\ \text{Run}\ 2$ at 8.8 TeV: significant improvements, to be quantified

▶ beyond Run 4 for ion-running: lighter ions for higher nucleon-nucleon luminosities \approx 10-100 (see J. Jowett QM)

 \rightarrow measurements as in *p*Pb now, larger kinematic range, smaller A

 \rightarrow smaller A: A-dependence of nuclear modification ad-hoc in parameterisation, important for impact parameter dep.

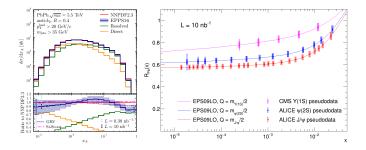

 \rightarrow thinking about new instrumentation:

lower- p_T , larger rapidity coverage, forward instrumentation

 \blacktriangleright "energy scan": not very appealing in this context \rightarrow rather low lumi per step unless a lot time invested

▶ focus on current statistically demanding measurements in the following Etretat 2018 low-x/nPDF 25/42

HL-LHC: low-x in pA in Run3/4

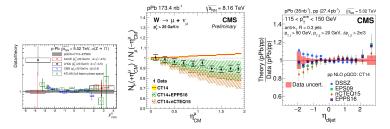

- not yet fully exploited in pPb due to stat. limitations, to start with Run 2
- Drell-Yan at forward rapidity & midrapidity at low-masses + photons in pp vs. pA
- dileptons including low-mass Drell-Yan and W: very precise based on data driven calibrations

 \rightarrow even after Run 3 and Run 4: further uncertainty reductions

- ▶ bb̄ and cc̄ correlations in pp vs. pA: Transverse Momentum Dependent pdfs meets CGC
- non-statistical dominated observable classes can profit from theory progress: observable redefinitions of correlation measures

Etretat 2018 low-x/nPDF

HL-LHC: low-x in UPC

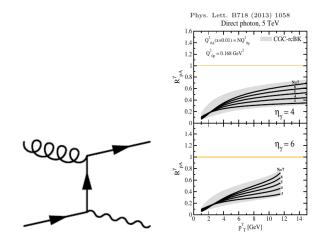


taken from Ilkka Helenius for UPC dijets, and Evgeny Kryshen for ALICE/CMS

 inclusive UPC-studies with dijets, including flavour tagged to increase kinematic range down to lower p_T

Iarge UPC vector mesons samples both in pA and AA for suppression factor measurements also with different mass scales: Y first time at QM incoherent production a lot of potential and stat. hungry, to be seen what is feasible at hadron collider Etretat 2018 low-x/nPDF

HL-LHC: nPDFs with high- Q^2 in Run 3/4


final result on Z from Run 1 (in contrast to Run 2, ALICE got more lumi in Run 1 than LHCb), Run 2 first prelim. for W, Run1 Dijets.

- unique kinematic range at perturbative scales at the LHC
- statistics increase: shrink syst. uncertainties in normalised distributions or asymmetries
- ► enlarge kinematic coverage towards forward, backward rapidity and in p_T → more statistics, but also larger tracker coverage at forward rapidity in ATLAS/CMS from Run4 on

```
► top as add. check for DGLAP consistency

Etretat 2018 low-x/nPDF
```

HL-LHC: ALICE Focal in Run 4

- plan for a ultra-granular calorimeter at forward rapidity as an option for ALICE
- measure photons in pPb at forward rapidity

competition: current LHCb and future LHCb tracker/calo-upgrades Etretat 2018 low-x/nPDF

Beyond Run 4: HL-LHC in view of nPDF & low-x

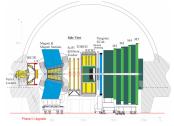
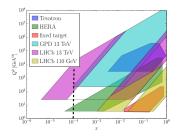



Figure 4.1: Schematic side view of the Phase-II detector.

- ATLAS/CMS with HL-LHC detectors: fully profit from higher lumi for hard nPDF probes
- ► LHCb upgrade II: similar pile-up as ATLAS/CMS now → precision measurements at high luminosities in pp and pA at forward acceptance → in design phase
- ► ALICE to be seen, for ideas: p. 23 → instrumentation ideas not focused on low-x aspect

Fixed-target options at the LHC

- ▶ fixed-target: potential of high-luminosity compared to collider → "high-x frontier" → nPDF constraints in x-range as high Q^2 -collider and energy loss studies with charm, beauty, Drell-Yan, photon → interesting (very) backward: EMC and even Fermi-motion with relatively low- Q^2
- LHCb internal gas target upgrade in next shutdown: 10-100 higher instant. lumi's than now (current about 1-100 /nb in one special run)
- ideas for ALICE (also with TPC) and LHCb for solid state and polarised targets being considered

Etretat 2018 low-x/nPDF

Opportunities at the LHC and instrumentation

- for hard probes at high Q²: CMS and ATLAS most interesting, lumi-hungry: pp measurements can be used to see where ultimate limits
- for low-x clean reach in pPb: LHCb most interesting, clean DY as well as photons, lumi-hungry pp measurements to be done to know how far precision can be pushed
- UPC-dijets: ATLAS/CMS: just started a lot of potential also extending to heavy-flavour as well as not only inclusive dijets
- UPC-vector mesons: LHCb, ALICE: so far focus on coherent production, extensions possible
- better forward instrumentation could be beneficial for exclusive studies to improve and enlarge UPC program

Current status and open questions

exploring non-linear regime of QCD at low-x and other QCD effects in collisions involving nuclei:

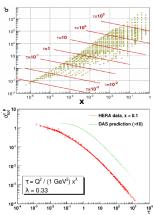
 \rightarrow low-x: strong theory interest in France, strong intrinsic motivation asking for asymptotic high energies

 \rightarrow exp. community mainly interest driven by initial state ion-ion

 many open questions to be answered: saturation unambiguously seen? low-x gluon/quarks in general? How strong EMC for gluons? role of factorisation breaking, e-loss, fragmentation non-universality?

 \rightarrow all inputs for QGP physics, required for precision

Run 1 with pioneering measurements, only Run 2 exploitation will make contours fully visible


Perspectives

20/30ies projects with interest in experimental French QGP community:

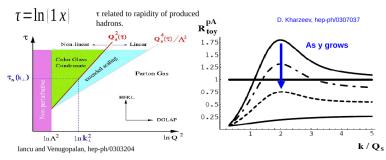
 approved ions@HL-LHC in 20ies: enlarge kinematic reach/precision at high Q² cleaner observables at low Q² with pA and AA (UPC)

 ions@HL-LHC in the 30ies: lighter ions for factor 10-100 increase in equivalent lumi
 → clean low and high-Q² observale profitting a lot: pp experience

- ► EIC, physics starting time ≈ 2030: control of kinematics and clean, very precise less reach in kinematics than LHC
- lepton-ion programme: profitting from "application" with contemporary ion-ion collisions as motivation

Saturation at HERA?

 No recent evidence so far from DGLAP fits in subranges[1]


On the other hand it was observed that HERA data exhibits geometrical scaling[2] with respect to:

$$\tau = \frac{Q^2}{Q_{s_1x_1}^2} = \frac{Q^2 x^{\lambda}}{Q_0^2 x_0}, \text{ for } x < 0.01$$

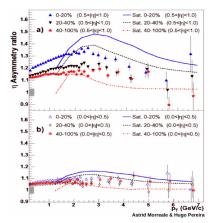
this has not been seen in prior fixed-target experiments and can be interpreted as an indirect consequence of the saturation regime

15% of events are diffractive. This is interesting as a sizable fraction of events are diffractive in most (all?) saturation models.

[1] arXiv:1007.5405 and [2] https://arxiv.org/pdf/hep-ph/0303204.pdf Astrid Morreale & Hugo Pereira

Expectations for a color glass condensate

Are the RHIC data evidence for gluon saturation at RHIC energies?


Astrid Morreale & Hugo Pereira

Pseudo-rapidity yield asymmetry vs p_T

Au direction / d direction

Back/front asymmetry in 200 GeV dAu consistent with general expectations of saturation or coalescence;

 $\rightarrow\,$ Doesn't match pQCD prediction.

Electron Ion Collider Initiatives

	PAST	<u> </u>	FUTURE			
	HERA at DESY	LHeC at CERN	HIAF at CAS	ENC at GSI	MEIC/ELIC at Jlab	eRHIC at BNL
√s[GeV]	320	800-1300	12-65	14	20-140	78-148
Proton x _{min}	1x10 ⁻⁵	5x10 ⁻⁷	7x10 ⁻³ -3x10 ⁻⁴	5x10 ⁻³	1x10 ⁻⁴	5x10 ⁻⁵
lon	р	p to Pb	p to U	p to ⁴⁰ Ca	p to Pb	p to U
polarization	-	-	p, d, ³ He	p, d	p, d, ³ He(⁶ Li)	p, ³ He
L[cm ² s ⁻¹]	2x10 ³¹	1034	10 ³² -10 ³⁵	10 ³²	1033	1033
Interaction points	2	1	1	1	2	2
Year	1992-2007	post ALICE	2019-2030	FAIR upgrade	Post 12 GeV	2025

STRATEGY: -Use existing investments

-Pursue luminosity 10x - 100x that of HERA.

-Enable nuclei targets and polarization (eRHIC,MEIC).

-Enable nuclei and high energy (LHeC).

-Optimize the instrumentation.

Astrid Morreale & Hugo

Project and Status

JELIC at JLab (Virginia)

e-Proton energy 3-12 GeV on 20 (65 ~140*) GeV Luminosity 7.9 10³³cm⁻²s⁻¹

e-Ion energy 3-12 GeV on 40 GeV (Pb) Luminosity 4.4 10³³ cm⁻²s⁻¹ Polarization electron, proton(deuterium)

What is needed to get there: ? WIP

1.Coherent electron cooling (CeC)

2. Proto-type of super-ferric magnets (to get to higher energies of p/d)

3. Proof of principle ion beam formation (short bunches)

4.Demonstrate the feasibility of producing high figure 8 depending on the magnets R2D beam polarization

eRHIC at BNL (New York)

20 GeV on 275 GeV 2.7 10³⁴ cm⁻²s⁻¹

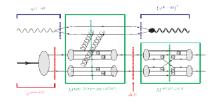
20 GeV on 100 GeV (Au) 1.6 $10^{34}\,\text{cm}^{\text{-2}}\text{s}^{\text{-1}}$

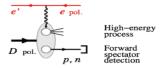
80%, 70%

What is needed to get there: ~ \$2 Billion

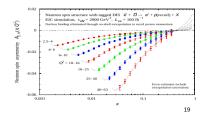
1.Coherent electron cooling (CeC) To achieve high lumi without large beam power loss. Will need to be tested.

2.Energy recovery Linac (electron accelerator) R&D ongoing


3.Demonstrate the feasibility of producing a 50mA polarized e-beam Astrid Morreale & Hugo Pereira


Short range correlations & physics with light nuclei

Exciting area of interest:


$e + D \rightarrow e' + p + n + J/\psi$

Exclusive measurements of tagged (polarized) protons and neutrons in coincidence with vector mesons probe the short-range quark-gluon nature of nuclear forces

Tag the recoil proton. Study the neutron's spin structure function. Other possibilities: Polarized EMC effect with polarized light nuclei

Electron Ion Collider Users

EIC Collaboration, Institution Locations over the World

map based on mailing list: open for all interested people

Astrid Morreale & Hugo Pereira

French participation to the EIC

CEA/Saclay:

Detector R&D funded through Temple University (Berndt Surrow's NSF, BNL R&D grant) LDRD (Laboratory Directed R&D) from BNL with SBU and Saclay on zig-zag patterns for micropatterns detectors (GEM/Micromegas) for the EIC.

Strong-2020 proposal on detector R&D for EIC: ultra-low ion backflow Micromegas for TPC, inside next-DIS work package

CNRS/Orsay: Calorimetry R&D funded through NSF, BNL LDRD grant

IGDORE-RONIN:

- H2020: Detector R&D and saturation physics consolidator ERC submitted by Astrid
- NSF & DOE: R&D and saturation physics proposals will be also submitted in fall by Astrid.