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NO CLEAR BSM SIGNAL AT THE LHC SO FAR

G. Rodrigo, PASC0OS2018
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WHY IS THE SM S0 SUCCESSFUL 50 YEARS LATER?

VOLUME 19, NUMBER 21

PHYSICAL REVIEW LETTERS

20 NOVEMBER 1967

1 1n obtaining the expression (11) the mass difference
between the charged and neutral has been ignored.

12)1, Ademollo and R. Gatto, Nuovo Cimento 444, 282
(1966); see also J. Pasupathy and R. E. Marshak,
Phys. Rev. Letters 17, 888 (1966).

13The predicted ratio [eq. (12)] from the current alge-

bra is slightly larger than that (0.23%) obtained from
the p-dominance model of Ref. 2. This seems to be
true also in the other case of the ratio I'(p— 71 7y)/
T'(y7y) calculated in Refs. 12 and 14.

L. M. Brown and P. Singer, Phys. Rev. Letters 8,
460 (1962).

A MODEL OF LEPTONS*

Steven Weinber,

Laboratory for Nuclear Science and
Massachusetts Institute of Technology,
(Received 17 Octobe:

Leptons interact only with photons, and with
the intermediate bosons that presumably me-
diate weak interactions. What could be more
natural than to unite' these spin-one bosons
into a multiplet of gauge fields ? Standing in
the way of this synthesis are the obvious dif-
ferences in the masses of the photon and inter-
mediate meson, and in their couplings. We
might hope to understand these differences
by imagining that the symmetries relating the
weak and electromagnetic interactions are ex-
act symmetries of the Lagrangian but are bro-
ken by the vacuum. However, this raises the
specter of unwanted massless Goldstone bosons.?
This note will describe a model in which the
symmetry between the electromagnetic and
weak interactions is spontaneously broken,
but in which the Goldstone bosons are avoided
by introducing the photon and the intermediate-
boson fields as gauge fields.® The model may
be renormalizable.

We will restrict our attention to symmetry
groups that connect the observed electron-type
leptons only with each other, i.e., not with
muon-type leptons or other unobserved leptons
or hadrons. The symmetries then act on a left-
handed doublet

PRI ) W,
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and

%E(wow 202 @,= (w —w )/Nf. (5)

The condition that ¢, have zero vacuum expec-
tation value to all orders of perturbation the-
ory tells us that A*=M ?/2k, and therefore the
field ¢, has mass M, while ¢, and ¢~ have mass
zero. But we can easily see that the Goldstone
bosons represented by ¢, and ¢~ have no phys-
ical coupling. The Lagrangian is gauge invar-

“OF COURSE OUR MODEL HAS TOO MANY
N ARBITRARY FEATURES FOR THESE PREDICTIUNS

T0 BE TAKEN VERY SERIQUSLY, ...

nght handed electron type leptons As iar

as we know, two of these symmetries are en-
tirely unbroken: the charge @ =T3-Np—-3Np,
and the electron number N=Np + Ny. But the
gauge field corresponding to an unbroken sym-
metry will have zero mass,* and there is no
massless particle coupled to N,® so we must
form our gauge group out of the electronic iso-
spin T and the electronic hyperchange Y=Np

+ 2N L.

Therefore, we shall construct our Lagrang-
ian out of L and R, plus gauge fields Au and
By, coupled to T and Y, plus a spin-zero dou-
blet

0=(%) @)

whose vacuum expectation value will break T
and Y and give the electron its mass. The on-
ly renormalizable Lagrangian which is invar-
iant under T and Y gauge transformations is

- e a2 2 — pu ) I - -
L=-%0 A -o A XA )°-i(®8 B -8 B )*-Ry" (6 -ig’B )R- 9 igleA —iior
1 uAv vAu+g " V) 1( Byt u) b% (u ig “)R Ly (uzgt A# zngu)L

-%Iauw—igKu ) +i%g’B“w!2—Ge (LoR +§¢TL)—M12¢T¢ +h(qu<p)2. (4)

We have chosen the phase of the R field to make G, real, and can also adjust the phase of the L and
Q fields to make the vacuum expectation value x=(¢° real. The “physical” ¢ fields are then (7

1264

the rest of the Lagrangian becomes
-l #‘)2 +A #2)2]

132 3 ’ -
AN (gAu +g Bu)z AGeEe. (7)

i -’
Hq R R if’,,)l,,e’y“eA

We see immediately that the electron mass
is AG,. The charged spin-1 field is

w E2—1/2 1 iA 2 8
u (A” +A ) (8)
and has mass
My, =ag. 9)
e neutral spin-1 fields of definite mass are
Z = 2)=U2(gA S, g'B 1
u (&%+8"%)~ (g utE ”), (10)
A = 2)=U2(_o14 34 gB ). 11
u(ghg) (gu+g”) (11)
eir masses are
M, =3n(g*+8"), (12)
M, =0, (13)

s0 A m is to be identified as the photon field.
The interaction between leptons and spin-1
mesons is

M

4

12\1/2 ’2_
i +e") [:i+g{)gy e-zr'y e+ vy (1+75)u] . (14)

We see that the rationaliz

lectric charge '
is

e=gg"/(&+g")*

and, assuming that W,_L couples as us
rons and muons, the usual coupling co
of weak interactions is given by

cw/ﬁ =g3/8MW’ =1/2)2.

Note that then the e-¢ coupling constant is
= —9l/4 U2 _9 07X10~°,
G, Me/l 2M G, \*=2.07%10

The coupling of ¢, to muons is stronger by a
factor M /M, but still very weak. Note al-
so that (14) gives g and g’ larger than e, so
(16) tells us that Myy >40 BeV, while (12) gives
Mz >My and Mz >80 BeV.

The only unequivocal new predictions made

by this model have to do with the couplings

of the neutral intermediate meson Zu I Z“
does not couple to hadrons then the best place
to look for effects of Z o is in electron-neutron
scattering. Applying a Fierz transformation
to the W-exchange terms, the total effective
e-v interaction is

(3¢%-g") u " \(
vy (1+'}'5)V 2(gg+g,,)é"y e +3ey 'ysej.

>g’, and this is just the usual
atrix element times an extra
factor 3. then g <g’, and the vector

interaction is multiplied by a factor —% rath-
er than 2. Of course our model has too many
arbitrary features for these predictions to be

1265
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NO CLEAR BSM SIGNAL AT THE LHC SO FAR

WHY IS THE SM S0 SUCCESSFUL 50 YEARS LATER?

» Based in the simplest gauge symmetries: SU(3)xSU(2)xU(1)

» Also the flavour sector very symmetric (GIM)
» The “natural” theory at “low™ energies (below the TeVs)

» We should expect that it will break at high energies: departure
scale undetermined

» The solution is not necessarily more symmetry (SUSY®), rather
less symmetry at high energies?

* “
J. Bernabeu: “Excess of symmetry leads to more
parameters, if all the terms are symmetric by themselves.”
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NO CLEAR BSM SIGNAL AT THE LHC SO FAR

WHERE TO EXPECT A BSM SIGNAL?

» LHC results suggest that new physics will appear as a gentle
deviation from the SM predictions / rare events suppressed in

the SM

» The quest for precision is at the forefront for new discoveries

» Very unlikely to be visible in inclusive observables or total decay
rates of known particles: the bulk of the contributions at “low
energies’, the characteristic hard scale is “low energy”
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NO CLEAR BSM SIGNAL AT THE LHC SO FAR

WHERE TO EXPECT A BSM SIGNAL?

Ll I 1 T

. B o
» Higher chances at the 107 s Background Fit £ 10
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e |ower statistics

e more sensitive to theory / higher theoretical
uncertainties due to missing higher orders

e fake BSM by missing higher order corrections

8 G. Rodrigo, PASCOS2018




Eur.Phys.J. C76 (2016) no.5, 291; arXiv:1512.02192

ONE OF THE MOST PRECISE MEASUREMENTS
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Czakon et al., arXiv:1803.07623
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Standard Model Production Cross Section Measurements @4 [rat
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Richard Feynman s Birthday

1918
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PRECISION IS ABOUT
MULTI-LOOP FEYNMAN
DIAGRAMS

Complexity grows with the number of
scales (loops, legs, masses)

That’s why most recent developments
try to circumvent the use of (loop)
Feynman diagrams: e.g. Generalized

Unitarity, recursion relations

BUT NOT ONLY

subtraction of IR singularities

all orders resummation of large logs
proton is not elementary (collinear
factorization, PDF ...)
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STUNNING PROGRESS IN THEORETICAL CALCULATIONS IN THE PAST YEARS

» NLO revolution (2010-2011) leading to automation in event generators
4 first serious order because protons are not elementary
4 thanks to a better understanding of the mathematical beauty of scattering
amplitudes

» Many 2->2 processes at NNLO (since 2015), current frontier is 2->3

e Ridder et al.
Figure by G.P. Salam ? SEVERD



STUNNING PROGRESS IN THEORETICAL CALCULATIONS IN THE PAST YEARS

» NLO revolution (2010-2011) leading to automation in event generators
4 first serious order because protons are not elementary
4 thanks to a better understanding of the mathematical beauty of scattering
amplitudes

» Many 2->2 processes at NNLO (since 2015), current frontier is 2->3

L0 ATLA e -
05

e.g. dijet production
data prefer NNLO

............

IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII lIlIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII IIIIIIIII

8 G. Rodrigo, PASCOS2018




8 G. Rodrigo, PASCOS2018

STUNNING PROGRESS IN THEORETICAL CALCULATIONS IN THE PAST YEARS

» NLO revolution (2010-2011) leading to automation in event generators
4+ first serious order because protons are not elementary
4+ thanks to a better understanding of the mathematical beauty of scattering

v

vV VvV VvV VvV VvV Vv

amplitudes

Many 2->2 processes at NNLO (since 2015), current frontier is 2->3
N3LO ggH (291 ): 5% th+37% (PDF-QS) [Anastasiou et al. (Dulat’s talk)][see also talk by T. Neumann]

NNLL resummations
NLO + PS

First attempts towards NNLO+PS
EW cannot anymore be ignored

Power corrections

Finite width effects of unstable

particles
better PDF, strong coupling

Total production cross section [pb]
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NNLO+NNLL

LHC-XS (N°LO ggF)
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8 TeV, 20.3 fb”, Eur. Phys. J. C 74:3109 (2014)
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7 TeV, 4.6 fb™", PRD 90, 112006 (2014)

1 8TeV, 203" arXiv:1702.02859
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| 7Tev,46" PRD 87, 112001 (2013)
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8TeV, 20.3 fb™", JHEP 01, 099 (2017)
13 TeV, 36.1 fb™', ATLAS-CONF-2017-031



PROTON NOT ELEMENTARY

I G Rodrigo, PASCOS2018

HIGHER ORDERS IN BSM SEARCHES

HH@NLO QCD within
non-linear EFT framework

» because protons are not
elementary QCD corrections
may modify substantially BSM
predictions

» typically granting less room for
BSM

/7 7 7
7/ 7 v
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N N \
N N \
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4 7/ 7/
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gg+qg \% ?,

G. Heinrich, Loops and Legs in QFT, May 2018

-2 -
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-8 -6 -4 -2 0 2 4 6 8

see also talk by I. Lewis



FROM SCATTERING AMPLITUDES TO CROSS SECTIONS

I G Rodrigo, PASCOS2018

SUBTRACTION OF IR SINGULARITIES

» Subtraction of IR singularities at NLO is solved: efficient algorithms applicable
to any process for which matrix elements are known

» At NNLO several working algorithms, successfully applied to “simple”
processes with up to four legs. Heavy computational costs

» Antennae Subtraction [Gehrmann et al]

4 Stripper [Czacon et al.]

-

.Q L

- -
AL AL 000

» Nested Soft-Collinear Subtraction [caola et al]

» Colourful Subtraction [pel Duca et al]

IXYXTYEHIIYYYT = v v v o o
- N

» N-Jettiness [Boughezal, Petriello et al., Gaunt et al.]

» T Substraction [catani, Grazzini et al]

-
-
2

o
-
: 0

L AL LU0 000

RR » Projection to Born [Bonciani et al]

» Geometric Substraction [Herzog]

» Unsubtration [Driencourt-Mangin, Herndndez-Pinto, Shorlini, GR]

EXCELENCIA
SEVERO
, OCHOA



MOTIVATION FOR UNSUBTRACTION

QFT NOT OPTIMAL

» SM extrapolated to infinite energy in loop corrections >>
MPlank

» Quantum state with N partons not = quantum state with
zero energy emission of extra partons

» partons can be emitted in exactly the same direction (not
enough space)

modify the number of

space-time dimensions
to d=4-2e
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THE THEORETICAL FRAMEWORK [Catani et al. 2008]

THE LOOP-TREE DUALITY THEOREM (LTD)

One-loop integrals and scattering amplitudes in any relativistic, local and unitary QFT
represented as a linear combination of N single-cut phase-space integrals  p,
(at higher orders: number of cuts equal to the number of loops)

/HGF ¢) = Z/ o) | [ Gplais a))

J71

— —

3
sets internal line on-shell, positive energy mode

dual propagator, kii = q; — q;

>  LTD realised by modifying the cstomary +i0 prescription of the Feynman propagators
(only the sign matters), it compensates for the absence of multiple-cut contributions that
appear in the Feynman Tree Theorem

> best choice p* = (1,0) : energy component integrated out, remaining integration in
Euclidean space ? e

8 G. Rodrigo, PASCOS2018
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SINGULARITIES IN THE LTD FRAMEWORK

energy of the on-shell energy of the on-shell
propagator smaller than the energy propagator larger than the energy
of the emitted particles of the emitted particles

this propagator on-shell

4+ Threshold singularities occur when 4+ Virtual particle emitted and absorbed
a sec?ond prqpagator gets on-shell 4+ Potential singularities cancel in the sum of all
consistent with Cutkosky : L
the single-cut contributions
+ ltbecomes collinear (soft) when a + Expected to be suppressed. If it is not
single massless particle is emitted sufficiently suppressed, we renormalise

4+ The bulk of the physics is in the “low”
energy region of the loop momentum

() EXCELENCIA
 SEVERO
, OCHOA



Sborlini, Driencourt-Mangin, Hernandez-Pinto, GR, JHEP 1608, 160

IR UNSUBTRACTION (FDU): MULTI-LEG

» The dual representation of the renormalised (UV subtracted locally) loop cross-section:
one single integral in the loop three-momentum

/ do{™) = / AlzRe M(O)|<ZM(1)( ( @-))> - M (5(quv)))

» A partition of the real phase-space

Z Ri({ptn+1) =1

» The real contribution mapped to the Born kinematics + loop three-momentum
(inspired by the factorization properties of QCD to built the mapping)

,/N+1 o = //elzjz% (1)) IMGL (PP

i {r’tN+1—= (g APL}nN)

» At NNLO: the RV and RR contributions mapped to the Born kinematics + the two
iIndependent loop three-momenta

8 G. Rodrigo, PASCOS2018




DEGENERATE IR STATES GENERATED TOGETHER h
P3

P,
IR SINGULARITIES AND MAPPING REGIONS: E.G. 1 T0 2 |
/pl Do
ds3 gl,x ,
D3 la, r i‘
0 collinear ,,/"‘“““"‘\\ threshold
W2 threshold |
01y
% > there is partial cancellation of L """"""""""" A
< singularities among single-cut dual
) contributions .z
¢ ¥ physics is in a region of the loop » integrand cancellation of IR singularities:
three-momentum which is of the works in d=4 space-time dimensions

size of the hard scale 0 g



PROTONS NOT ELEMENTARY

I G Rodrigo, PASCOS2018

COLLINEAR FACTORIZATION AT HIGHER-ORDERS

» Theory predictions in hadron collisions are based on factorization
» long vs short distance physics: PDF+pQCD-+hadronization (up to power corrections)

source:
( Butterworth et al. 2012

proton proton

» Implicitly assumed, but not yet proven
» Breaking of collinear factorization starting from N3LO [Catani, Florian, GR / Forshaw, Seymour, Siodmok 2012]

» Uncanceled soft divergences from two colliding massive quarks starting from NNLO [Catani et. al 2002]
because Block-Nordsieck not valid for non-Abelian

» Protons are not SU(2) symmetric: EW corrections violate Block-Nordsieck [Ciafaloni et al. 2001],
potentially relevant at HE-HLC/FCC

wm
gE=
Sg=
om



IN THE HORIZON OF THE LANDSCAPE

HL=LHC PROSPECTS
100 fb-1 today
3000 fb-1 by 2037

» statistical errors in the range 1% - 2%

LHC PHYSICS AT 7 PRECISION ?
5 PHYSICS ATTHE LHC IS A GREAT CHALLENGE



CONCLUSIONS

» LHC data is challenging our expectations to find BSM

» The quest for precision is at the forefront for new
discoveries

» It requires to challenge our current understanding of QFT
in many different aspects

» % physics still far away (20377?), but promising landscape
given the recent successful developments in the field
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