PRECISION HIGGS PHYSICS

FALKO DULAT

CLEVELAND 6/5/18

HIGGS PHYSICS AT THE LHC

WHAT IS THE UV COMPLETION OF THE STANDARD MODEL?

HIGGS PRODUCTION

HIGGS PRODUCTION

HIGGS COUPLINGS

PRECISION

Experimental uncertainties are getting close to the theoretical uncertainties

- New physics might modify the standard model at the % level
- Precision calculations (and generators) are needed

LHC AS A PRECISION MACHINE

 $\mathcal{O}\left(\frac{Q^2}{(1TeV)^2}\right) \sim \%$

Process	Generator	Showering	PDF set	σ [pb] $\sqrt{s} = 13$ TeV	Order of calculation of σ
ggH	POWHEG NNLOPS	Ρυτηία8	PDF4LHC15	48.52	N ³ LO(QCD)+NLO(EW)
VBF	Powheg-Box	Ρυτηία8	PDF4LHC15	3.78	NNLO(QCD)+NLO(EW)
WH	Powheg-Box	Ρυτηία8	PDF4LHC15	1.37	NNLO(QCD)+NLO(EW)
$q\bar{q}' \rightarrow ZH$	Powheg-Box	Ρυτηία8	PDF4LHC15	0.76	NNLO(QCD)+NLO(EW)
$gg \rightarrow ZH$	Powheg-Box	Ρυτηία8	PDF4LHC15	0.12	NLO+NLL(QCD)
tīH	MG5_AMC@NLO	Ρυτηία8	NNPDF3.0	0.51	NLO(QCD)+NLO(EW)
$b\bar{b}H$	MG5_AMC@NLO	Ρυτηία8	CT10	0.49	5FS(NNLO)+4FS(NLO)
t-channel tH	MG5_AMC@NLO	Ρυτηία8	CT10	0.07	4FS(LO)
W-associated tH	MG5_AMC@NLO	Herwig++	CT10	0.02	5FS(NLO)
γγ	Sherpa	Sherpa	CT10		
Vγγ	Sherpa	Sherpa	CT10		

- Small corrections to the inclusive cross section (~5% NLO, ~3% NNLO, ~0.1% N3LO)
- Sizeable (~6-10%) corrections to fiducial cross sections

10-2

 10^{-4}

1.1

	$\sigma^{ m nocuts}[m pb]$	$\sigma^{\rm VBF\ cuts}[{\rm pb}]$
LO	$4.032\substack{+0.057 \\ -0.069}$	$0.957\substack{+0.066\\-0.059}$
NLO	$3.929^{+0.024}_{-0.023}$	$0.876\substack{+0.008\\-0.018}$
NNLO	$3.888^{+0.016}_{-0.012}$	$0.826\substack{+0.013\\-0.014}$

 $p_{\perp}^{j_{1,2}} > 25 \text{ GeV}, |y_{j_{1,2}}| < 4.5,$ $\Delta y_{j_1,j_2} = 4.5, \quad m_{j_1,j_2} > 600 \text{ GeV},$ $y_{j_1}y_{j_2} < 0, \quad \Delta R > 0.4$

[Bolzoni, Maltoni, Moch, Zaro; Cacciari, Dreyer, Karlberg, Salam, Zanderighi; Dreyer, Karlberg]

QCD CORRECTIONS TO GLUON FUSION

- Compute dominant contribution at the LHC in fixed order perturbation theory
- Very successful for inclusive cross section
- Perturbative series stabilizes at N3LO

THRESHOLD EXPANSION

- N3LO calculations are difficult
- Many complicated (analytic) integrals
- First step: threshold expansion

37

 $\hat{\sigma} = \sum \bar{z}^n \eta_n$

n = -1

PDF uncertainties

[Anastasiou, Duhr, FD, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger]

- Factorized EWK corrections ~5%
 - $\sigma = \sigma_{QCD} \times (1 + \delta_{EWK})$
- Residual uncertainty: ~1%

[Actis, Passarino, Sturm, Uccirati; Degrassi, Maltoni; Anastasiou, Boughezal, Petriello; ...]

- Factorized vs non-factorized corrections (recently: LO through $\mathcal{O}(\epsilon^2)$) [Bonetti, Melnikov, Tancredi]
- Corrections to (Higgs+Jet) [Keung, Petriello]
- Small corrections for inclusive Higgs, but need to be taken into account at current level of precision (could be larger for differential)

- Infinite top-mass EFT is just an approximation
- Exact mass dependence known at NLO [Dawson; Djouadi, Spira, Zerwas]
- Corrections to EFT at NNLO

[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven]

- Interference with light quarks is large and negative
- Particularly import in differential distributions (some progress towards NNLO)

[Bonciani, del Duca, Frellesvig, Henn, Moriello, Smirnov; Melnikov, Tancredi, Wever]

p₇ (GeV)

DIFFERENTIAL DISTRIBUTIONS

- Experiments don't measure inclusive cross sections $|\eta| < 2.37$ $p_T^{\gamma_1} > 0.25 m_{\gamma\gamma}$ $|\eta| \notin [1.37, 1.52]$ $p_T^{\gamma_2} > 0.35 m_{\gamma\gamma}$
- Instead: Differential distributions, fiducial cross sections

0.10

0.08

0.06

0.04

0.02

2.2 1.8

1.4

1.0

0.6

K

NLO

LO

NNLO

NLO

20

 $[\ pb/GeV]$

 $d\sigma/dp_T^H$

We need high precision predictions for observables that are close to the experiment

- Fully differential N3LO is difficult
- Focus on Higgs-differential observables
- Calculate semi-inclusively by integrating out QCD radiation

YRapidity p_T Transverse momentum m_h Mass / Virtuality ϕ Azimutal angle

$P \ P \to H + X \to \gamma \gamma + X$

 $P \ P \rightarrow H + X \rightarrow 4l + X$

- Proof of principle at NNLO
- Stable distributions
- Theoretically interesting lowpt results
- Realistic observables

19

DISTRIBUTIONS OF FINAL STATE MOMENTA

- Distributions of final state momenta:
- Leading photon pT
- Rapidity difference

 $\Delta \eta$

- N3LO is still difficult
- Again: Threshold expansion
- Validate at NNLO

RAPIDITY DISTRIBUTION AT N3L0

- LHC experiments demand high-precision predictions
- Precision observables can shed light onto possible BSM physics
- Lot of progress in theoretical observables, many high precision predictions available
- New level of precision requires careful reevaluation of previously neglected effects
- Next goal: push differential distributions to % level accuracy

FULLY DIFFERENTIAL N3LO IS WITHIN REACH!