

Prospects for BSM Searches at the HL-LHC with CMS

Zhenbin Wu

(University of Illinois at Chicago)

-- On behalf of the CMS Collaboration

High-Luminosity LHC

- Currently SM works beautifully, no direct evidence of new physics yet
- Naturalness argument and low mass of Higgs boson provide strong motivation for new particles and/or interactions at the TeV scale
- HL-LHC will deliver 3/ab data, provide unprecedented window for searching new particles/phenomena at the TeV scale

Summary of CMS HL-LHC Upgrades

Trigger/HLT/DAQ

- Track information at L1-Trigger
- L1-Trigger: 12.5 μs latency output 750 kHz

• HLT output ≈7.5 kHz

- Replace FE/BE electronics
- Lower operating temperature (8°)

- Replace DT & CSC FE/BE electronics
- Complete RPC coverage in region 1.5 < η < 2.4
- Muon tagging 2.4 < η < 3

Replace Endcap Calorimeters

- Rad. tolerant high granularity
- · 3D capability

Replace Tracker

- · Rad. tolerant high granularity significantly less material
- 40 MHz selective readout (Pt≥2 GeV) in Outer Tracker for L1-Trigger
- Extend coverage to $\eta = 3.8$

Analysis Strategies

- Two methods either projection from present analysis or parametrized simulation
- Projections from a present analysis
 - Existing signal and background samples (simulated at 13 TeV) scaled to higher luminosity and Vs=14 TeV.
 - Apply analysis steps (cuts) from present analyses.
 - Three scenarios for systematics:
 - 1. keep present systematics
 - improved by a fixed factor
 - no systematics, only statistics
- Full analysis with parametrized detector performance
 - Delphes with up-to-date phase-2 detector performance (tracking, vertexing, timing, pileup mitigation algorithms, increased acceptance, performance of new detectors)
 - Consider <PU> = 140/200
 - Dedicated simulation of signal and background samples
 - Analysis steps (cuts) guided by present analysis. Limited optimization for HL conditions. Cross checks with present analysis.

Heavy Stable Charged Particle

- Heavy stable charged particles with long lifetime, moving slowly and heavily ionizing the sensor material as they pass through the detector
 - Stau and gluino in Split SUSY scenarios, with small cross section
- Look for anomalously high energy loss through ionization (dE/dX) in the tracker
 - Maintain Phase-1 dE/dx measurement in the Phase2 Inner Tracker,
 - Extend discrimination with HIP flag by adjustable threshold in the Outer Tracker modules

CMS-TDR-014

Z'→ttbar Resonance Search

- Z´→ttbar studied in two distinct channels
 - Semileptonic (I + b-jet + jet + MET) [B2G-15-002]
 - All-hadronic channel (jets) [<u>B2G-15-003</u>]
- Both rely on high p_T top reconstruction

Project to 3/ab, with different scenarios for systematic uncertainties:

- 1. Leave systematics unchanged
- 2. No systematic uncertainties applied best scenarios

CMS-DP-2016-064

Boosted tops:

Search for W' \rightarrow Iv

- Tail search for $W' \rightarrow lv$ with full Delphes analysis
- Discriminating variable M_T from (e, MET)
 - Electron channel with good resolution at very high mass and rather flat resolution.
- q W'/W \bar{q}

- Assume systematics from run-2.
- To understand the M_T tail and performance of high p_T leptons.

Search for W'→tb

- Projection from <u>B2G-16-017</u> to HL-LHC
- Two scenarios to extrapolate systematics from 12.9/fb to 3/ab
- Leave systematics unchanged, simply scale templates with lumi
- Reduce most experimental to percent level, theory uncertainties by factor 2
 → Impact on projected exclusion limit: 4(4.2) TeV for case 1(2)
- 3. No systematics

CMS-DP-2016-064

Vector-like Quark

- Search for electroweak production of single T (T→tH) with Delphes analysis
- Benchmark BR(T→tH) =0.25 for LH Tbq,
 BR(T→tH)= 0.5 for RH Ttq
- Event signature has a very forward jet that can benefit from forward upgrade.
- Higgs tagging in AK8 jets, will benefit from b-tagging improves with phase-II detector.

Dark Matter

- LHC provides complementary sensitivity for direct detection experiments, allows the study of different types of interaction
- Interpretation in simplified models following LHC DM forum (arXiv:1507.00967) with 4 parameters (M_{med}, M_{DM}, g_{SM}, g_{DM})
- Full monojet analysis carried out on Delphes samples
 - Follow <u>CMS-EXO-16-037</u> procedure
- Final state: large MET (>200 GeV) + jet
- Dominant: 70% Z(vv)+jets; 30% W(lv)+jets
 - Estimated with data-driven method
 using muons control region Z(mm), W(mv)

Dark Matter: Axialvector

Spin-1 mediator,

axial vector

 $g_{SM} = 0.25$,

 $g_{DM} = 1$

- Bin MET distribution in 22 exclusive bins.
- Extend to MET > 2.4 TeV (now 1.2 TeV).

- Nominal = assume the systematic control of the MET distribution same as the current CMS-EXO-16-037 analysis
- Nominal divided by 2
- 3. Nominal divided by 4

CMS-DP-2016-064 3000 fb⁻¹ (14 TeV) CMS Preliminary Simulation M_{DM} (GeV) Axialvector, $g_{ou} = 1$, $g_{ou} = 0.25$ minal: control of systematics same as EXO-16-037 1400 1200 1000 800

2000

1500

2500

3000

Current reach for M_{med}~ 2 TeV

600

400

4000 4500

M_{med} (GeV)

80

Dark Matter: Pseudoscalar

- Same MET binning as <u>EXO-16-037</u>
- Low MET systematics are dominated by the uncertainty on lepton identification/isolation efficiency for the control sample
- High MET systematics are dominated by statistics
- Systematics scenarios:
 - Nominal = scale run-2
 systematics at low MET to HL LHC recommendation, scale
 high MET systematics by
 luminosity
 - 2. Nominal divided by 2
 - Scale run-2 systematics in the full MET range by luminosity

Current reach for $M_{med} \sim 400 GeV$

Spin-0 mediator, pseudoscarlar $g_{SM} = 0.25$, $g_{DM} = 1$

Search for Supersymmetry

Supersymmetry is one of the best motivated theories for physics beyond the SM

- Search for SUSY is one of the major goals of LHC
 - Currently working toward the full Run2 results
- For HL-LHC, other SUSY models move into focus.
 - Explore higher mass, low cross section & compressed mass spectra.
 - Study properties if new particle(s) discovered
 - Special signatures such as heavily ionizing and long-lived particles

SUSY Models

- Natural scenarios (NM1, NM2, NM3)
 - strong interaction sector and decay BR of the gluinos similar in the three models
 - NM1 (Bino like LSP)
 - NM2 (Wino like LSP)
 - NM3 (Higgsino like LSP)
- Stau co-annihilation model (STC)
 - light stau1 almost mass degenerate with bino-like neutralino1
- Stop co-annihilation model (STOC)
 - light stop1 almost mass degenerate with bino-like neutralino1
 - stop decays into charm-neutralino1
 - gluino-gluino & gluino-squarks crosssections are smaller but not negligible

Full Search Spectrum

experimental signature

Exploring

- 9 searches carried out with Delphes simulation with 140PU assumption
- Different types of SUSY models lead to different patterns of discoveries in different final states after different amounts of data.
- Electroweakinos searches expected to benefit from high-lumi, due to its small XS

Exploring SUSY model space

Analysis	Luminosity	Model				
	$({\rm fb^{-1}})$	NM1	NM2	NM3	STC	STOC
all-hadronic (H_T - H_T^{miss}) search	300					
	3000					
all-hadronic ($M_{\rm T2}$) search	300					
	3000					
all-hadronic \widetilde{b}_1 search	300					
	3000					
1-lepton \widetilde{t}_1 search	300					
	3000					
monojet \tilde{t}_1 search	300					
	3000					
$m_{\ell^+\ell^-}$ kinematic edge	300					
	3000					
multilepton + b-tag search	300					
	3000					
multilepton search	300					
	3000					
ewkino WH search	300					
	3000					

 $<3\sigma$ $3-5\sigma$ $>5\sigma$

CMS-SUS-14-012

Search for C1N2 decaying into Wh

- Search for $\chi_1^{\pm}\chi_2^{0}$ production with Delphes
 - Signal region defined by M(bb), MT, MET etc
 - MET and M_{CT} are the essential observables to discriminate signal from background
 - systematic uncertainties assumed to be 1/2 w.r.t to that measured in 8 TeV analyses $M_{\text{CT}}^2(j_1,j_2) = [E_{\text{T}}(j_1) + E_{\text{T}}(j_2)]^2 [\vec{p}_{\text{T}}(j_1) \vec{p}_{\text{T}}(j_2)]^2$
- Large gain in discovery potential
- Detector upgrade is crucial for b-tagging and MET performance

 $= 2p_{\mathrm{T}}(j_1)p_{\mathrm{T}}(j_2)(1+\cos\Delta\phi(j_1,j_2))$

Search for C1N2 decaying into WZ

- Search for $\chi_1^{\pm}\chi_2^{0}$ production where $\chi_1^{\pm} \rightarrow W^{\pm}\chi_1^{0}$, $\chi_2^{0} \rightarrow Z\chi_1^{0}$ through opposite-sign same-flavor leptons pair (OSSF)
 - Separate invariant mass of OSSF for "on-Z" and "high-Z"
 - Search binned by MET, MT, and invariant mass of OSSF
- Sensitivity strongly depends on EWK-inos composition, affects cross-sections

Search for C2N4 decaying into WW

- In radiatively-driven natural SUSY
 C2N4 has largest visible cross-section
 - 25% BR into same sign Ws
- Search for final state with two same charge leptons and large MET
 - Veto third lepton, b-tagged jet and high p_⊤ jets
- Dominant background from SM WZ production, in which the third lepton is lost
 - Extended coverage of muon system can reduce the WZ background by a factor of 2

Search for C2N4 decaying into WW

- Dominant backgrounds are dibosons, suppressed by m_{T. min} variables
 - Search regions binned by 7 m_{T. min} range
- Search sensitive up to ~900 GeV scale for both assumptions on N1 (150, 250 GeV)
- Sensitivity depends on the value of N1 mildly at large C2/N4 mass, while more significant when C2, N4 mass approach N1

CMS-TDR-019

Long Live Particle

- Signature driven searches; a new focus at the LHC, for present and future.
- Non-standard objects, need to maintain dedicated detector capabilities

Displaced Muons

- sMuons in gauge-mediated SUSY breaking models could have a significant lifetime
 - Clean final state: two smuons decay far from primary vertex + MET
 - Cross section varies by breaking scale, tan β or modified parameters
- Phase 2 upgrade moun system and algorithm improved displaced muon efficiency
- Impact parameter significance $d_0/\sigma(d_0)$ to suppress QCD, ttbar, Z/DY backgrounds
- Challenge: keeping trigger thresholds at ~10GeV in 200PU environment

Outlook

- We have gotten a variety of interesting physics results from LHC already, and we expect a lot more during the future LHC running
- Run 2, Run 3, and HL-LHC will provide a comprehensive physics program for BSM searches
- Detector upgrades (phase1 & phase2) are underway to enable this interesting physics program
- In preparation for a CERN Yellow Report as input to the European Strategy group by the end of 2018.
 - to review, extend and further refine our understanding of the physics potential of the High Luminosity LHC

Stay tuned!