
Early Universe cosmology with the 
Sunyaev Zel’dovich effect 

Matthew C. Johnson 
York University 

Perimeter Institute

Collaborators: J. Cayuso, A. Deutsch, E. Dimastrogiovanni, S. Ferraro, 
M. Harris, M. Madhavacheril, J. Mertens, M. Münchmeyer, K. Smith,  

A. Terrana, and P. Zhang



The primary CMB
Planck Collaboration: The Planck mission

Fig. 7. Maximum posterior CMB intensity map at 50 resolution derived from the joint baseline analysis of Planck, WMAP, and
408 MHz observations. A small strip of the Galactic plane, 1.6 % of the sky, is filled in by a constrained realization that has the same
statistical properties as the rest of the sky.

Fig. 8. Maximum posterior amplitude Stokes Q (left) and U (right) maps derived from Planck observations between 30 and 353 GHz.
These mapS have been highpass-filtered with a cosine-apodized filter between ` = 20 and 40, and the a 17 % region of the Galactic
plane has been replaced with a constrained Gaussian realization (Planck Collaboration IX 2015). From Planck Collaboration X
(2015).

viewed as work in progress. Nonetheless, we find a high level of
consistency in results between the TT and the full TT+TE+EE
likelihoods. Furthermore, the cosmological parameters (which
do not depend strongly on ⌧) derived from the T E spectra have
comparable errors to the TT -derived parameters, and they are
consistent to within typically 0.5� or better.

8.2.2. Number of modes

One way of assessing the constraining power contained in a par-
ticular measurement of CMB anisotropies is to determine the
e↵ective number of a`m modes that have been measured. This
is equivalent to estimating 2 times the square of the total S/N
in the power spectra, a measure that contains all the available
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Figure 3. Angular two-point correlation function as observed by Planck [7]. The full
black line and the shaded regions are the expectation from 1000 SMICA simulations
based on the ⇤CDM model and the 68% and 95% confidence regions. The plot also
shows four colored lines that fall on top of each other and represent the result of the
Planck analysis of the Commander, SEVEM, NILC and SMICA maps at resolution
N

side

= 64. While the measured two-point correlation is never outside the 95%
confidence region, the surprising feature is that we observe essentially no correlations
at 70� < ✓ < 170� and a significant lack of correlations at ✓ > 60�.

0.5% have been obtained, some even below 0.01%. An important question is the size of

the mask used in the analysis. It has been shown in [37] that most of the large-angle

correlations in reconstructed sky maps are between pairs of points at least one of which

is in the part of the sky that is most contaminated by the Galaxy. This is in line with the

findings of [32], where it was shown that more conservative masking makes the lack of

correlation even more significant. This by itself already signifies a violation of isotropy.

Undoubtedly, S
1/2

is an ad hoc and a posteriori statistic, but it captures naturally

the observed feature originally noted in COBE. Several a posteriori “improvements”

have been suggested [39, 7]. For example, in order to avoid the argument that µ = 1/2

has been fixed after the fact one might let µ vary. But now the look elsewhere e↵ect

must be taken into account. The Planck team implemented such an analysis which (in

our convention) returns global p-values of the order of 2%. However, this global Sµ

statistic addresses a di↵erent question, namely how likely is it that there is a lack of

correlation for an arbitrary µ. Thus we cannot argue that this statistic is better than

S
1/2

, all we can say is that it is di↵erent.

The primary CMB: some hints?
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CMB anomalies after Planck 3
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Figure 1. Angular band power (top) and residual angular band power (bottom) of
the cosmic microwave temperature anisotropies as presented in the Planck 2015 release
[17]. The error bars show the sum of measurement error and cosmic variance, the latter
being the dominant source of uncertainty at large angular scales.

total angular-momentum `.‡
During the last two decades, ground-based, balloon-borne and satellite CMB

experiments led to an improved understanding of those temperature anisotropies. The

WMAP and Planck space missions played a special role, obtaining full-sky measurements

that enabled us to investigate a large range of angular scales, from the dipole ` = 1 to

` ⇠ 2500, more than three decades in `. The band power spectrum as published by

Planck is shown in Fig. 1.

These temperature fluctuations are believed to have been generated from quantum

fluctuations in the very early Universe [18] by a (nearly) scale-invariant mechanism. The

most prominent context is cosmological inflation [19, 20]. If inflation lasts long enough,

the spatial geometry of the Universe is generally predicted to be indistinguishable from

Euclidean, and the topology of the observable Universe is expected to be trivial (simply

connected). Even more importantly, inflation predicts that the CMB temperature

fluctuations should be: (i) statistically isotropic, (ii) Gaussian, and (iii) almost scale

invariant. It also predicts: (iv) phase coherence of the fluctuations; (v) for the simplest

models, a dominance of the so-called adiabatic mode (strictly speaking it is not only

adiabatic but also isentropic); and (vi) the non-existence of rotational modes at large

scales. Finally, depending on the energy scale of cosmological inflation, there might

be (vii) a detectable stochastic background of gravitational waves [21] that also obeys

‡ This analogy from quantum physics is useful to describe the spherical harmonic analysis of
temperature fluctuations in terms of well-known physical concepts.

The primary CMB: some hints?



The primary CMB: what’s next?

Sadly, the primary CMB will not 
teach us much more**. 

Cosmic Variance:
Projection of 3D field.
Few modes on large scales/finite 
volume.



CMB secondaries

current

• CMB secondaries: CMB photons scattered from mass or charges. 



CMB secondaries

At the resolution/sensitivity frontier!

future

• CMB secondaries: CMB photons scattered from mass or charges. 



CMB secondaries

• CMB Lensing: scattering from mass. 

�Tlensed = rTunlensed ·r�

• Can infer     from temperature and polarization 
measurements.

�

• We’re now in the ‘lensing era’, with exciting 
constraints on cosmology emerging from on-going 
experiments.

(See Mat Madhavacheril’s talk tomorrow)



CMB secondaries

• Sunyaev Zel’dovich (SZ) effect: scattering from free electrons 
after reionization.

• Kinetic SZ (kSZ) effect: temperature anisotropies 
due to scattering from bulk motion of free electrons 
(preserves blackbody).

• Polarized SZ (pSZ) effect: polarization anisotropies 
due to scattering from quadrupole seen by free 
electrons (preserves blackbody).

�TkSZ ⇠ ⌧(n̂)ve↵(n̂)

�E,BpSZ ⇠ ⌧(n̂)qE,B
e↵ (n̂)



The kinetic Sunyaev Zel’dovich (kSZ) effect

The induced temperature anisotropies are given by a line of sight integral:
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The kinetic Sunyaev Zel’dovich (kSZ) effect
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large-scale	
effective	
velocity

Provides a census of the locally observed 
CMB dipole at the location of each electron.

Provides information off of our past light 
cone - new information beyond CMB.



The kinetic Sunyaev Zel’dovich (kSZ) effect
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CMB dipole at a point is mostly from 
local peculiar velocities 



The kinetic Sunyaev Zel’dovich (kSZ) effect
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‘primordial’ information encoded in long-
range (in angle or redshift) correlations of 

the dipole field.



kSZ Tomography

Excellent probe of very large scales!

[Zhang and Stebbins, Zhang ’10, Terrana, Harris, MCJ ’16] 

�TkSZ ⇠ ⌧(n̂)ve↵(n̂)

• Given a tracer of the electron density field (e.g. a galaxy survey), 
can derive a quadratic estimator for the dipole field:

• Get a coarse-grained dipole field, averaged over each tomographic 
redshift bin ↵

Preserves long-range correlations, small-scale peculiar velocities cancel.

v̄↵e↵(n̂) = QE [�T (n̂), �↵(n̂)]



kSZ Tomography

• Proof-of-concept with N-body simulations: 

(See James Mertens’ talk tomorrow)
10

FIG. 2: Hammer-Aito↵ projections of di↵erent fields on the sky from the box-in-box simulations; all fields are properly correlated. Top left: the total CMB
temperature fluctuations, including kSZ contributions. The CMB dipole is not included. Top right: the contribution of the kSZ e↵ect to temperature fluctuations.
Middle left: the binned, average density field (Eq. 5); middle right: the binned, average dipole field; bottom left: the binned convergence field; bottom right: the
contribution to the dipole field from the big-box modes. Binning is performed over a redshift range z = 0.18 to z = 0.27.
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FIG. 3: The dipole field obtained from simulations compared to the reconstructed dipole field. The maps do not
include modes higher than ` > 28. The reconstruction of the top two plots was done using a single redshift bin from
z = 0.086 to z = 0.37, while the bottom plots are a redshift bin from z = 0.33 to z = 0.37. By eye, it is noticeable
that large angular modes between the two maps tend to agree, while smaller-scale modes only do to a moderate
extent. The reconstruction of smaller scales is also found to be better in the smaller, higher-redshift bin. This is in
agreement with results obtained by looking at the reconstruction e�ciency, shown in the top left panel of Figure 5.
Excess power can also be seen on small scales, consistent with the spectra found in Figure 4.

simulated modes are. In general, we find that the reconstructed modes agree well with the simulated modes
on the largest angular scales. The reconstruction e�ciency is found to be better at higher redshift, again
we expect this due to a lack of nonlinear e↵ects. Reconstruction is also found to perform better in smaller
bins, an e↵ect we can at least partially attribute to the increased information content: information from
small-scale modes has not been so heavily averaged away. However, in larger redshift bins, the correlation
with primordial modes is larger, as discussed in the next section.

B. CMB-kSZ Dipole Correlation

We now consider how well we can determine the intrinsic CMB dipole using information from the recon-
structed large-scale velocity field, as suggested in Ref. [18]. This idea is not without ambiguity – because one
can arbitrarily change the CMB dipole by performing a boost, there is no unique definition of the intrinsic
dipole. Instead, one must settle on a definition universal and specific enough to facilitate a meaningful
comparison. We can make progress by noting that the local CMB dipole should, to an extent depending
on one’s definition of the intrinsic CMB dipole, be correlated with the ` = 1 moments of the remote dipole
field. The contributions to our measured CMB dipole and the remote dipole field of a nearby observer are
determined primarily by small-scale modes which source local peculiar velocities. However, there are also
subdominant contributions to the CMB dipole from larger-scale (but still local) velocity modes and other
e↵ects both along our past lightcone and at the CMB last scattering surface.

A standard definition of the fundamental CMB dipole is obtained by boosting to a reference frame in



The polarized Sunyaev Zel’dovich (pSZ) effect

The induced polarization anisotropies are given by a line of sight integral:

The pSZ effect depends on the components of the local CMB quadrupole:

qme↵(n̂e,�e) =
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[Kamionkowski, Loeb ’97, Alizadeh, Hirata ’12, Deutsch, Dimastrogiovanni, 
MCJ, Münchmeyer, Terrana ’17] 



The polarized Sunyaev Zel’dovich (pSZ) effect

e-
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#$%
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Provides a census of the locally observed 
CMB quadrupole at the location of each 

electron.

Provides information off of our past light 
cone - new information beyond CMB, 

different information from kSZ.

All ‘primordial’ unlike kSZ.



pSZ Tomography

• Given a tracer of the electron density field (e.g. a galaxy survey), 
can derive a quadratic estimator for the quadrupole field:

• Get a coarse-grained quadrupole field, averaged over each 
tomographic redshift bin ↵

�E,BpSZ ⇠ ⌧(n̂)qE,B
e↵ (n̂)

q↵,Ee↵ , q↵,Be↵ = QEE,B [E(n̂), B(n̂), �↵(n̂)]

• E-mode quadrupole: scalar+tensor

• B-mode quadrupole: only tensor



New cosmological observables

• CMB + LSS enables the construction of new cosmological 
observables from CMB secondaries:

�(n̂) v̄↵e↵(n̂) q̄↵,Ee↵ (n̂) q̄↵,Be↵ (n̂)
Power	asymmetry

long	wavelength	modulation	 of	small	scale	power	

• All are indirectly determined from statistics of small-scale 
fluctuations: ideally suited for resolution/sensitivity frontier.



Can we detect it?

• Reconstruction of the bin-averaged dipole field via quadratic estimator.

Per-mode signal to noise assuming no foregrounds, full sky, CMB-S4 like CMB 
experiment, LSST-like galaxy survey.

[Terrana, Harris, MCJ ’16, Deutsch, Dimastrogiovanni, MCJ, Münchmeyer, Terrana ’17] 
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FIG. 1: Left: Signal to noise per dipole field mode v̄e↵,`m for a cosmic variance limited experiment with
`max = 3000, using the redshift binning given in table ??. Right: Same with 24 bins [? ] up to red shift z = 6. Note
that the number of bins also changes the shot noise that is not included in these plots and can be too large for such

a tight red shift binning.

A. Polarization from the CMB quadrupole field

polarization is generated by the line-of-sight integral of the local CMB temperature quadrupole, i.e.

(Q± iU)(bn) = �
p
6

10

Z

1

0

d� ⌧̇e�⌧(bn,�)q̃±e↵(bn,�) (23)

q̃±e↵(bn,�) =
X

m

h

qm,S
e↵ (bn,�) + qm,T

e↵ (bn,�)
i

±2Y2m(bn),

where qm,S
e↵ and qm,T

e↵ are the scalar and tensor contributions to the components of the temperature quadrupole moment
at each position in space, respectively. If we expand (Q± iU)(bn) [? ], in complete analogy with what was done above
for the kSZ e↵ect, we find that the CMB polarization due to the pSZ e↵ect from the inhomogeneous distribution of
electrons is

(Q± iU)(bn)
�

�

pSZ
= �

p
6

10
�T

Z

d� a �ne(bn,�)q̃
±

e↵(bn,�). (24)

Now we redshift bin the equation in the same way as above to obtain

(Q± iU)(bn)
�

�

pSZ,L
= �

p
6

10

X

↵

�⌧↵(bn)q̃±↵
e↵ (bn) (25)

Formally, q±↵(bn) should be interpreted as the average components of the quadrupole in each bin. However, since the
correlation length for the quadrupole field is larger than any reasonable bin choice (see Appendix ??), unlike in the
kSZ case here we do not discriminate between the averaged and un-averaged field. The binned equation Eq. (??) is
the starting point for the quadratic estimator of the quadrupole field q±(bn,�).

B. CMB to matter cross power spectrum due to pSZ

From Eq. (??), it follows that the pSZ contribution to the CMB polarization is given by

±2a
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FIG. 2: Signal to noise from scalar perturbations per quadrupole field mode aq,E`m for a cosmic variance limited
experiment with `max = 3000, using the redshift binning in table ??. Left: using E- and B-modes. Right: using only

E-modes. This illustrates the power of B-modes for this application.

(see Eq. (??)), there is very little signal in the first few bins in the plots on the right. A measurement of the B-mode
component of the quadrupole field therefore requires relatively high redshift surveys. Increasing the resolution to
`max = 5000 increases the signal to noise by roughly a factor of 10. In this case, it is possible to obtain a high fidelity
reconstruction of the first few modes of the quadrupole field due to tensors.

As explained in section ??, the upper bound on the summation, `max, represents the resolution scale and can
be mapped roughly to experimental specifications. In this case, the resolution for `max = 3000 is as above, with
✓FWHM ' 2.70 for gaussian beams. However, the sensitivity requirements are far more stringent. To obtain both the
lensed E-mode and lensing B-mode power out to `max = 3000, the noise requirement is �N ' 0.12 µK per beam,
which is roughly a factor of three short of what is planned for CMB S4. The higher resolution case of `max = 5000 will
be even more demanding in terms of resolution and sensitivity. However, the modulated CMB E-mode polarization
anisotropies (and some range of the modulated CMB B-modes) at this resolution are within the reach of CMB S4,
which will provide constraining power somewhat short of what is presented in Fig. ??.

IV. PRINCIPAL COMPONENT ANALYSIS

Our signal, the e↵ective dipole field and the remote quadrupole field, is correlated between di↵erent red shift
bins. This correlation is in particular strong for the remote quadrupole field, i.e. there is a modest number of
independent quadrupoles contained in the observable universe. To quantify how much degenerate information we
obtain from our estimators, we performed a principal component analysis (PCA). The PCA for the dipole and
quadrupole fields are based on the signal covariance matrices Eq. ?? and ?? respectively, which are N ⇥ N matrix
where N = Nbins

P

`(2` + 1), of which most elements are zero. Here, we consider only scalar contributions to the
quadrupole field. Based on the covariance matrix, we plot the “explained variance” as a function of the number of
PCA components, which is the usual diagnostic for the number of components in a PCA. For the kSZ case we choose
`max = 10 and for the pSZ case `max = 7, motivated by the signal-to-noise forecasts above. The results are shown in
Fig. ??. As expected, in the case of the quadrupole field most of the structure is described by a very small number
of modes, due to the large correlation length. This is consistent with previous observations to this e↵ect [? ? ]. A
greater number of independent modes are available from the dipole field, which is sensitive to somewhat smaller scales,
and therefore has a larger correlation length. We stress, however, that the modes probed by the remote dipole and
quadrupole are di↵erent than those probed by the primary CMB on large angular scales, as they involve information
from the volume enclosed by the past light cone, as opposed to a projection onto the past light cone.

V. PROBES OF HOMOGENEITY

Above, we have established that the largest modes of the dipole and quadrupole fields can be measured with the
highest signal to noise. What might we learn from the measurement of these modes? Below, we explore two possible

kSZ pSZ

10

B-mode components of the quadrupole field. This was first explored in Ref. [? ]. We present a derivation of these
contributions in Appendix ??, where the final result is:
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. (50)

Here, A`(k,�) and B`(k,�) encode projection e↵ects, and have the limiting values of A`(k,� ! 0) ! 0 and B`(k,� !
0) ! �1/5. The functions Gq

T,(+,⇥)(k,�) fix the amplitude of the e↵ect from the two gravitational wave polarization
states. Definitions of these functions can be found in Appedix ??.

From the multipoles, assuming equal amplitudes for the two gravitational wave polarization states we obtain the
signal power spectra:
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The ⌧ field is given in terms of its power spectrum C̃�⌧�⌧
` as in the previous section. The polarization field has the

CMB power spectra C̃EE
` and C̃BB

` , which includes primary CMB and lensing.

2. Forecast

Here, we make a cosmic variance limited forecast for the E-mode component of the quadrupole field sourced by
scalar perturbations as well as the E- and B-mode components of the quadrupole field sourced by tensors. We assume
a cosmic variance limited measurement of the lensed E-mode and lensing B-mode power of the CMB polarization
anisotropies to a value of `max = 3000, as well as a measurement of the matter power spectrum at this resolution. We
use the same 6-bin configuration as assumed for the kSZ case above.

In Fig. ??, we show the per-mode signal to noise for the scalar sourced E-mode quadrupole field. In the left panel,
we include information both from the E- and B-mode polarization anisotropies in the CMB. Here, it can be seen that
a high fidelity reconstruction of the quadrupole field can be made over a range of multipoles over all redshift bins. For
comparison, in the right panel we show the per-mode signal to noise including only E-mode polarization anisotropies.
Clearly, the far smaller amplitude of the lensed B-modes over this range of multipoles is essential for a high-fidelity
reconstruction 2.

In Fig. ??, we show the per-mode signal to noise for the tensor sourced E-mode (left) andB-mode (right) components
of the quadrupole field for `max = 3000 (top) and `max = 5000 (bottom) with the 6-bin configuration used above.
Here we assumed a fiducial value r = 0.1. It is easy to linearly rescale the signal to noise to other values of r. Focusing
on the E-mode component of the quadrupole field, for `max = 3000 the signal to noise is order one for a number of
redshift bins, with the signal to noise falling more steeply with ` at low redshift. Therefore, a reconstruction of the
first mode is in principle possible. Because the B-mode component of the quadrupole field vanishes at low redshift

2 In previous work [? ], the authors proposed an estimator that was dominated by the large noise from CMB E-modes. The estimators
proposed in this paper therefore represent a large improvement in the possible signal to noise.

v̄e↵,`m



Can we detect it?

• Reconstruction of the E-mode and B-mode tensor quadrupole field via 
quadratic estimator using both E-mode and B-mode polarization.

[Alizadeh, Hirata ’12, Deutsch, Dimastrogiovanni, MCJ, Münchmeyer, Terrana ’17] 

Forecast for r = 0.1

E-mode tensor modulation

11

FIG. 3: Signal to noise for tensors per quadrupole field mode aq,E`m and aq,B`m for a cosmic variance limited
experiment, using the redshift binning in table ??, using E- and B-modes. Left: E-mode remote quadrupole field

created by tensors with r = 0.1 for `max = 3000 (top) and `max = 5000 (bottom). Right: B-mode remote quadrupole
field created by tensors with r = 0.1 for `max = 3000 (top) and `max = 5000 (bottom).

As explained in section ??, the upper bound on the summation, `max, represents the resolution scale and can
be mapped roughly to experimental specifications. In this case, the resolution for `max = 3000 is as above, with
✓FWHM ' 2.70 for gaussian beams. However, the sensitivity requirements are far more stringent. To obtain both the
lensed E-mode and lensing B-mode power out to `max = 3000, the noise requirement is NBB,EE ' 0.3 µK-arcmin,
which is roughly a factor of four short of what is planned for CMB S4. The higher resolution case of `max = 5000
will be even more demanding in terms of resolution and sensitivity, requiring significant advances beyond the planned
next-generation experiments.

IV. PRINCIPAL COMPONENT ANALYSIS

Our signal, the e↵ective dipole field and the remote quadrupole field, is correlated between di↵erent red shift
bins. This correlation is in particular strong for the remote quadrupole field, i.e. there is a modest number of
independent quadrupoles contained in the observable universe. To quantify how much degenerate information we
obtain from our estimators, we performed a principal component analysis (PCA). The PCA for the dipole and
quadrupole fields are based on the signal covariance matrices Eq. ?? and ?? respectively, which are N ⇥ N matrix
where N = Nbins

P

`(2` + 1), of which most elements are zero. Here, we consider only scalar contributions to the
quadrupole field. Based on the covariance matrix, we plot the “explained variance” as a function of the number of
PCA components, which is the usual diagnostic for the number of components in a PCA. For the kSZ case we choose
`max = 10 and for the pSZ case `max = 7, motivated by the signal-to-noise forecasts above. The results are shown in
Fig. ??. As expected, in the case of the quadrupole field most of the structure is described by a very small number
of modes, due to the large correlation length. This is consistent with previous observations to this e↵ect [? ? ]. A

B-mode tensor modulation



Can we detect it?

• In principle, yes! There is a signal to go after.

• Resolution and sensitivity requirements of next-generation CMB (e.g. CMB S4) 
are in the ballpark of what would be required.

• Massive galaxy surveys such as LSST, Euclid, SKA are in the ballpark of what 
would be required.

• Still, won’t be easy: foregrounds, partial sky coverage, non-gaussian and non-
uniform instrumental noise, other systematics, etc.

Important point:  This technique is not cosmic variance 
limited, and improvements can be made!



What would we learn?

• Intrinsic CMB dipole.

• Primordial non-gaussianity: factor of ~2 improvement on CMB 
or LSS alone.

• Dark energy: competitive constraints to g-g lensing, different 
degeneracies.

• Models of low-l CMB anomalies: improved constraints on e.g. 
power suppression on large-scales, power asymmetry, 
alignment of multipoles…..

• Tensors: new constraints on r, nt, chirality…

[Cayuso,MCJ, Mertens]

[Ferraro,Giri,MCJ,Madhavacheril,Münchmeyer,Smith]

[Cayuso,MCJ, Mertens]

[Cayuso,MCJ, Mertens]

[Deutsch, Dimastrogiovanni, MCJ, Münchmeyer] 



The best part

This science can be done with planned/funded 
CMB experiments and galaxy redshift surveys.

There is in principle lots of progress to make 
using these techniques in the future.



Thanks!


