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DIVERGENCES IN QFT. (DYSON 1951)
INSTANTONS (Lipatov 1976)

* In 1976 Lipatov realized that divergences in the perturbative series are
related to instantons. In fact
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Consider the following example in one dimension: (t'Hooft 1979)

F(z) is called the
S(x)/N) . Borel transform of G

F(z) diverges when
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This is the classical equation of motion and the solution is the instanton.
They are related with barrier penetration (Coleman 1977) and can
be treated semiclassically
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RENORMALONS
(‘'T HOOFT 1979)

One type of Feynman diagram that goes as n! (after renormalization)
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For large Euclidean momentum k:
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The Borel transform is
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CONNECTION WITH THE RENORMALIZATION GROUP
(PARISI 1978-1979)
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The general solution is of the form
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CONNECTION WITH THE RENORMALIZATION GROUP
(PARISI 1978-1979)

For large Euclidean momentum there exist the equivalence
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That in the multi-coupling case. (This requires an analytical solution of the RGE's)
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ITERATIVE SOLUTION OF THE RGE’S

(J.-H. He, Variational iteration method for autonomous ordinary differential systems, Applied Mathematics and Computation 114 (2000) 115-123)

It turns that the more general problem of the solution of ordinary non-linear differential
equations has been studied by He. In particular for the RGE's
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Integrating one finds
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ITERATIVE SOLUTION OF THE RGE’S
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These are the comparison of the first three orders in t with the usual
numerical solution of the RGE's




Algorithm for finding the divergences in the Borel series
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Using the comparison test we can locate the divergence of the
multivariate Borel series, eventually on the positive axis and therefore the
Renormalons

The generalized Borel transform
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The integral form of the generalized Borel transform
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Leading Renormalons. One coupling much larger with respect
To the others
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Applying the Borel transform
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This definition is the generalization of the t' Hooft result when

one coupling is large with respect to the others
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Another important limit: all couplings are of the same size.
A power counting argument

In this case one finds
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N is the number of couplings in the theory under consideration

This result shows how the position of the renormalon’s singularity
changes with the number of couplings. Large N push the renormalon
singularity to smaller values, therefore worsening the issue of
perturbative renormalizability




TOY MODEL EXAMPLE (N = 3)

The potential
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The RGE’s for this model are
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We parametrize so that usual criteria for convergence may applied
to the variable R
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TOY MODEL. LEADING RENORMALON CASE

* (Za)pole from the A4 serie
* (Za)pole from the a serie

* (24)pole from the A, serie
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Asymptotic values for the poles in the Borel variable
in the leading renormalon case

5(21)8(22) X (20) D = —8(21)6(22)

B33
2v/2
v B13B31 + Bz B3z + 2635

5(1)0 A= 2 :
(21)8(22) X (20)pote $/ B35 + B13P31 833 + P23B32833

R

0(21)0(22)

§(21)8(20) X (26)2) =

(21)0(22) ,




NON-LEADING CASE. REAL Z’S
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NON-LEADING CASE. COMPLEX Z’S

R from A-Series

R from a-Series




CONTACT WITH REALISTIC THEORIES

* There are BSM scenarios with a non trivial scalar potential ( such
as MSSM, 2HDM, mLRSM and GUTs). Renormalons may be

important for all these examples

Renormalon’s singularities might be important in these examples.
The perturbativity issue has already been studied in mLRSM in

/)
A. Maiezza, M. Nemevs'ek and F. Nesti, Perturbativity and mass scales in the minimal left-right symmetric model,

Phys. Rev. D94 (2016) 035008, [1603.00360]” and “A. Maiezza, G. Senjanovic” and J. C. Vasquez, Higgs sector of
the minimal left-right symmetric theory, Phys. Rev. D95 (2017) 095004, [1612.09146]"

The position of the Landau poles at 1-loop can be calculated with
the iterative solution of the RGEs




CONCLUSIONS

We have extended the concept of renormalons to a QFT with an arbitrary number of fields and couplings

Our aim of to find regions in the parameter space of any model where the perturbative renormalizability
is guaranteed

Analogous to the seminal work of t' Hooft, the renormalons can be identified in terms of the one loop
beta functions

In the generic case regions in the parameter’s space of the model emerges where the perturbative
renormalization fails

We provide a method to find such regions both analytically (with some assumptions) and numerically, and
then to infer bounds on the couplings of a given model

We have used a simple toy model with two coupled scalar fields in order to illustrate the emergence of
the renormalons

In summary, any theory might be perturbatively ill-defined even below the Landau poles. To our
knowledge, there is no a quantitatively precise measure of the non-perturbative regime of a generic QFT.
We have tried to fill up this gap by requiring the Borel resumability in a framework with an arbitrary
number of fields and couplings. This enables one to determine safe regions in the parameter space of a
given model, where perturbation theory can be consistently used and resummed.
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