

Scaling Behavior of QCD Vertex Functions in Universal Extra Dimensions

Fig. loop corrections governing large scale physics

Daniel Wiegand
University of Pittsburgh
@PASCOS 2018

Based on:

A. Freitas, DW - (arXiv: 1805.12142)

The Why, the What and the How

the Why

- Extra Dimensions are attractive **new physics** models
- Analysis is **universally** applicable
- Radiative Corrections important for new physics searches!

the What

- Infinite amount of KK-modes contributing to loop corrections
- UED just effective theory itself → sensitivity to UV completion

the How

- IR behavior of vertex functions
- Analytic Summation over tower
- Exact renormalization group flow analysis

n =n = $2\pi R$

Universal Extra Dimensions

Minimal Setup: One extra dimension penetrated by all fields

$$\Phi(x,y) = \frac{1}{\sqrt{\pi R}} \left[\phi_0(x) + \sqrt{2} \sum_{n=1}^{\infty} \left(\phi_n^+(x) \cos \frac{ny}{R} + \phi_n^-(x) \sin \frac{ny}{R} \right) \right]$$

massless mode **tower** of KK-excitations of mass $\frac{n}{R}$

Universal Extra Dimensions

Minimal Setup: One extra dimension penetrated by all fields

$$\Phi(x,y) = \frac{1}{\sqrt{\pi R}} \left[\phi_0(x) + \sqrt{2} \sum_{n=1}^{\infty} \left(\phi_n^+(x) \cos \frac{ny}{R} + \phi_n^-(x) \sin \frac{ny}{R} \right) \right]$$

massless mode

tower of KK-excitations of mass $\frac{n}{R}$

Problems: No Chiral Interactions in 5D and too many unphysical modes

Solution: Additional breaking of 5D Lorentz Invariance (Orbifolding)

¹Appelquist, Cheng, Dobrescu hep-ph/0012100

Universal Extra Dimensions

Use **boundary conditions** to project out unphysical modes (e.g. massless Goldstone mode A_5)

Corrections to SM Operators

Renormalize Vertex for every n:

- On-Shell for external states
- Contribution to the coupling counterterm δZ_g in \overline{MS}

$$\beta_{\text{SM}} = \left(\frac{11}{3}C_A - \frac{4}{3}n_q T_f\right) \xrightarrow{n \ge 1} \beta_N = \left(\frac{7}{2}C_A - \frac{8}{3}n_q T_f\right)$$

q_0 n q_0 q_0 q_0 q_0

Corrections to SM Operators

Renormalize Vertex for every n:

- On-Shell for external states
- Contribution to the coupling counterterm δZ_g in \overline{MS}

$$\int \int n=0$$

$$\beta_{\text{SM}} = \left(\frac{11}{3}C_A - \frac{4}{3}n_q T_f\right) \xrightarrow{n \ge 1} \beta_N = \left(\frac{7}{2}C_A - \frac{8}{3}n_q T_f\right)$$

Running of coupling:

$$\alpha_S^{-1}(\mu) = \alpha_S^{-1}(M_z) + \frac{\beta_{SM}}{2\pi} \log \frac{\mu}{M_Z} + \frac{\beta_N}{2\pi} \sum_{n=1}^{\Lambda R} \log \frac{\mu}{nR^{-1}}$$

SM running for $M_Z \le \mu \le R^{-1}$

Contribution at threshold

q_0 n q_0 q_0 q_0 q_0

Corrections to SM Operators

Renormalize Vertex for every n:

- On-Shell for external states
- Contribution to the coupling counterterm δZ_g in \overline{MS}

$$\beta_{SM} = \left(\frac{11}{3}C_A - \frac{4}{3}n_q T_f\right) \xrightarrow{n \ge 1} \beta_N = \left(\frac{7}{2}C_A - \frac{8}{3}n_q T_f\right)$$

Running of coupling: $\alpha_S^{-1}\left(\mu\right) = \alpha_S^{-1}\left(M_z\right) + \frac{\beta_{\rm SM}}{2\pi}\log\frac{\mu}{M_Z} + \frac{\beta_N}{2\pi}\sum_{n=1}^{NR}\log\frac{\mu}{nR^{-1}}$

SM running for $M_Z \le \mu \le R^{-1}$ Contribution at **threshold** nR^{-1}

Running of Wilson Coefficient:
$$C_{\mathrm{SM}}\left(\mu\right) = \frac{g_s^3}{192\pi^2} \sum_{n=1}^{\Lambda R} \left[2C_A - (21C_A - 16n_qT_f) \log \frac{n^2}{(\mu R)^2} \right]$$

q_0 Born Decay Virtual q_0 Correction Real **Emission**

IR Behavior of KK Operators

 $q_0Q_1G_1$ Vertex has **IR divergence** at lowest order

Cancels in physical observable $\Gamma(G_1 \to q_0 Q_1)$

Technical Notes:

- **Phase Space Slicing** with two cutoffs
- Truncated mUED violates gauge invariance → Coloron
- Radiative mass splitting

Higher Corrections

Renormalization at **every level** anew – strategy as before but: First coupling counterterm δZ_{qr} different!

$$\beta_{\text{Coloron}} = \left(\frac{(3+85C_A^2)(C_A - 2C_F)}{12} - \frac{8}{3}n_q T_f\right)$$

$$\beta_N = \left(\frac{7}{2}C_A - \frac{8}{3}n_q T_f\right)$$

Running of coupling similar – assume $\alpha_{\scriptscriptstyle S}$ constant for $\mu \leq R^{-1}$

Higher Corrections

Renormalization at **every level** anew – strategy as before but: First coupling counterterm δZ_{gr} different!

$$\beta_{\text{Coloron}} = \left(\frac{(3+85C_A^2)(C_A - 2C_F)}{12} - \frac{8}{3}n_q T_f\right)$$

$$\beta_N = \left(\frac{7}{2}C_A - \frac{8}{3}n_q T_f\right)$$

Running of coupling similar – assume $\alpha_{\scriptscriptstyle S}$ constant for $\mu \leq R^{-1}$

BUT Wilson Coefficient well defined! The **leading order** approximation:

$$C_{\text{KK}}(\Lambda) = \frac{g_s^3}{192\pi^2} \left[4 \left(11C_A - 8n_q T_f \right) \Lambda R - \left(42C_A - 32n_q T_f + 9C_F \right) \log \Lambda R \right]$$

Higher Corrections

Renormalization at **every level** anew – strategy as before but: First coupling counterterm δZ_{q} , different!

$$\beta_{\text{Coloron}} = \left(\frac{(3+85C_A^2)(C_A - 2C_F)}{12} - \frac{8}{3}n_q T_f\right)$$

$$\beta_N = \left(\frac{7}{2}C_A - \frac{8}{3}n_q T_f\right)$$

Running of coupling similar – assume α_s constant for $\mu \leq R^{-1}$

BUT Wilson Coefficient well defined! The **leading order** approximation:

$$C_{\text{KK}}(\Lambda) = \frac{g_s^3}{192\pi} \left[4 \left(11C_A - 8n_q T_f \right) \Lambda R - \left(42C_A - 32n_q T_f + 9C_F \right) \log \Lambda R \right]$$

$$C_{\text{SM}}(\Lambda) = \frac{g_s^3}{192\pi} \left[4 \left(11C_A - 8n_q T_f \right) \Lambda R - \left(21C_A - 16n_q T_f \right) \log \Lambda R \right]$$

$$C_{\text{SM}}(\Lambda) = \frac{g^{3}}{192\pi} \left[4 \left(11C_{A} - 8n_{q}T_{f} \right) \Lambda B - \left(21C_{A} - 16n_{q}T_{f} \right) \log \Lambda R \right]$$

Exact Flow Analysis

Alternative approach: Solve the 5D 1–loop ERGE

$$\partial_t \Gamma_k = \frac{1}{2} \mathrm{Tr} \left[\partial_t \mathcal{R}_k \left(\frac{\partial^2 S}{\partial \Phi \partial \Phi} + \mathcal{R}_k \right)^{-1} \right] \qquad \text{\textbf{Coarse grains} between IR k and UV cutoff Λ, with regulator \mathcal{R}_k.}$$

¹Wetterich arXiv:1710.05815 ²Litim hep-th/0203006

Exact Flow Analysis

Alternative approach: Solve the 5D 1–loop ERGE

$$\partial_t \Gamma_k = \frac{1}{2} \mathrm{Tr} \left[\partial_t \mathcal{R}_k \left(\frac{\partial^2 S}{\partial \Phi \partial \Phi} + \mathcal{R}_k \right)^{-1} \right] \qquad \text{Coarse grains between IR k and UV cutoff Λ, with regulator \mathcal{R}_k.}$$

¹Wetterich arXiv:1710.05815 ²Litim hep-th/0203006

Use non-local heat kernel expansion to find effective action

$$\partial_t \Gamma_k = \frac{1}{2(4\pi)^{\frac{D}{2}}} \int d^D x \left[\text{Tr}[\mathbb{1}] Q_{\frac{D}{2}} \left[h_k \right] + \text{Tr} \left[U g_U U \right] + \text{Tr} \left[\Omega_{MN} g_\Omega \Omega^{MN} \right] \right]$$

³Codello, Percacci, Rachwał, Tonero arXiv:1505.03119

Exact Flow Analysis

Alternative approach: Solve the 5D 1–loop ERGE

$$\partial_t \Gamma_k = \frac{1}{2} \mathrm{Tr} \left[\partial_t \mathcal{R}_k \left(\frac{\partial^2 S}{\partial \Phi \partial \Phi} + \mathcal{R}_k \right)^{-1} \right] \qquad \text{Coarse grains between IR k and UV cutoff Λ, with regulator \mathcal{R}_k.}$$

¹Wetterich arXiv:1710.05815 ²Litim hep-th/0203006

Use non-local heat kernel expansion to find effective action

$$\partial_t \Gamma_k = \frac{1}{2(4\pi)^{\frac{D}{2}}} \int d^D x \left[\text{Tr}[\mathbb{1}] Q_{\frac{D}{2}} \left[h_k \right] + \text{Tr} \left[U g_U U \right] + \text{Tr} \left[\Omega_{MN} g_\Omega \Omega^{MN} \right] \right]$$

QCD
$$\alpha_s^{-1} = \frac{7C_A}{4\pi}R$$

³Codello, Percacci, Rachwał, Tonero arXiv:1505.03119

Comparison of Schemes

Fig. Cutoff scale-dependence of the vertices for different schemes

... and now what?

UED leads to interesting and rich Pheno!

- UED signatures can be probed at LHC and beyond
- Cutoff dependence is universal
- Sensitivity to UV completion (numerically modest)

Measure (future) decay width(s) for further information!

- O We showed:
 - Large scale behavior for all vertices similar
 - FRGE describes linear running independent of compactification
 - Universal behavior for large class of models

Thanks!