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Recently in the news

- The mathematical and physical foundations underlying the no-boundary
proposal have been claimed ill-defined, in a series of four papers
(Feldbrugge, Lehners & Turok, 1703.02076, 1705.00192,
1708.05104 and 1805.01609)

« One claims to have introduced a “new element of rigor”, Picard-Lefschetz
theory, that would put the theory on firmer mathematical footing. One

also insists on a purely Lorentzian formulation of the theory

- Using this, one claims that any implementation of the no-boundary idea
via a semiclassical path integral leads to unsuppressed fluctuations

around isotropic backgrounds, concluding that the idea in this form
should be discarded



Proposal for ¥ (Hartle & Hawking '83)

W[ three-geometry] = > exp(—1I[g])

four-geometries

Sum over (all Euclidean) four-geometries g which have a boundary
on which the induced three-geometry is the argument of the wave

function, with I the Euclidean gravitational action

If the three-geometry is closed (this talk), the four-geometries are
compact and have as only boundary the three-manitfold on which the

argument of the wave function lives
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Proposal for ¥ (Hartle & Hawking '83)

VHH [h’ij7¢]2 ~ Z/CDQWDX S g x;MJ /R
M

Quantum gravity”?

In the absence of a complete theory of quantum gravity
1t 1s reasonable to try and identify principles which speci-
fy a wave function of the universe which is adequate for
predictions on scales larger than the Planck scale using a
low-energy effective gravitational theory. The hope
would be that such principles could be generalized to a
complete theory.

(Halliwell & Hartle '91)

but cf. 1111.6090, “Holographic no-boundary measure”
1711.10037, “Higher Spin de Sitter Hilbert Space”



Proposal for ¥ (Hartle & Hawking '83)

VHH [hij7¢]z ~ Z/CDQWDX S g x;MJ /R
M

Some principles:

1. Integral should converge

2. WU should satisty constraints implementing diff. invariance
(Wheeler-DeWitt eq.)

3. Classical spacetime on familiar scales should be implied when
the universe is large

4. Reproduction of QFT for matter when spacetime is approx.

classical, i.e. matter fluctuations on a fixed (curved) background
should be stable
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Minisuperspace quantum cosmology:

the general programme

Path integral over all physical dof. in GR too difficult technically.
The best we have been able to do is “truncate” the theory down

to a small number of fields of a single variable: minisuperspaces

- Typically only time reparametrization invariance and isotropic fields

are kept. Manifold decomposed into 3+1, and we consider metric

Anzétze / action

—N(7)%d7? + hy;[q*(7)]dx"da?

Q.
Vi

N
]

diz | = — A
M <2 ) H(qg,1I) = %faﬁ(Q)HaHB + U(q)



Minisuperspace quantum cosmology:

the general programme

ds® = —N(7)*d7? + hy;[¢® (7)]dz'dz?

Slg,II; N :/0 dr (Ilo¢* — NH) H(q,1I) = %faB(Q)HaHB U(q)

- (Classical reparametrization invariance leads to constraint H = (

|

N = f
0q” = fq“, H} f(0) =0= f(1)
ops = f{pg, H}




Minisuperspace quantum cosmology:

the general programme

ds® = —N(7)*d7? + hy;[¢® (7)]dz'dz?

Slg. N = [ dr(Lg® = NH)  H@.T) = 5 f*(@Il + Ul

- (Classical reparametrization invariance leads to constraint H = (

+ In quantum theory: physical state ¥(q®) annihilated by the operator

version of the constraint

HU =0 (Wheeler-DeWitt eq.)

In position space: H = h2V2+h2§R—|—U ¢ — 2—D
’ o -2 ST 8D -1
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g Schrodinger equation:
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With suitable contour C ,
W solves the WDW equation

HWY =0
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in the MSS Ansatz, that are everywhere reqular (at least, classically)
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VUypg 1n an anisotropic minisuperspace

We studied a two-dimensional, anisotropic minisuperspace model (Bianchi

type IX cosmology)

2 N(T)2 -2 p(T) 52 4 52 ,Q(T) 2
ds® = q(T)d | 4(1—|—2)|

This is a non-linear completion of the model studied by Feldbrugge et al.

(P,a)(1)=(p,q)
s (p, q) Z/dN / DpDg DI, DII, ¢ TN/

‘\

closed contour around origin

Hq(o) = —1
four-ball



VUypg 1n an anisotropic minisuperspace
(p,q)(1)=(p,q)

\IJHH(P, q) — j[d]\f / Dp Dgq DHpDHq 67;S[p,q,Hp,Hq;N]/h

(p,114)(0)=(0,—1)

Instantons: (part of) Taub-NUT-de Sitter with complex NUT parameter

A
p=4(r"—L?) A=(r—L1)" = S(r+3L)(7 ~ L)’
. 16L2A iN.

T2 — 2 L =

4



VUypg 1n an anisotropic minisuperspace

(p,q)(1)=(p,q)

Re(iS/h) Uuu(p,q) = 7{ dN / Dp Dq DIL,DII, ¢iStPa-pMa:N]/A
| (p.T14)(0)=(0,~1)

2

1.5

1.0F

a=p/q—1

0.5} squashing parameter

-0.5€

-1.0+

Fluctuations around isotropy are suppressed in the no-boundary state




Comments and conclusions

When implementing the NBP in detail in toy models of quantum
oravity we are faced with ambiguities, such as the choice of contour
for PI and QM boundary conditions. These are constrained by
mathematical and physical requirements. In simple models there is

a unique semiclassical no-boundary wave function

We did not mention Picard-Letschetz theory

We calculated the/a no-boundary wave function in an anisotropic
minisuperspace and saw that fluctuations are suppressed. The
calculation of Feldbrugge et al. is plagued by the breakdown of

perturbation theory

The no-boundary proposal is alive and well
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- When implementing the NBP in detail in toy models of quantum

oravity we are faced with ambiguities, such as the choice of contour
for PI and QM boundary conditions. These are constrained by
mathematical and physical requirements. In simple models there is

a unique semiclassical no-boundary wave function

- We did not mention Picard-Letschetz theory

- We calculated the/a no-boundary wave function in an anisotropic
minisuperspace and saw that fluctuations are suppressed. The
calculation of Feldbrugge et al. is plagued by the breakdown of

perturbation theory

Thank you!

- The no-boundary proposal is alive and well






Feldbrugge et al.: what went wrong?

Minisuperspace: tensor perturbations of FLRW metric for a homogeneous and

isotropic closed spacetime

N(7)? .
d82 — (T) d’7'2 -+ Q(T) (QZJ + Eij) d€2*d)’
q(T)
Eij = 2 Z Prim (T) (Gij)pp, ()
n,l,m
n=273,...
1€{2,3,...,n) VA (Gij)y, = —(n* 420 —2) (Gij),0,
me{—1,...,1} transverse traceless tensor harmonics on S°

So in principle ¢% = {q, Pnim}, S = Spx + A,



Feldbrugge et al.: what went wrong?

ds* = dr? + q(7) (Q4; + &;;) dQ"dQ?

Eij = 2 Z onim (T) (Gij)py, (€2)

n,l.m

e Expand S to quadratic order in ¢, and attempt to evaluate PI semicl.

1
L 5. n(n+2) ,
S — Sbackground _I_/O dr N (Wq Pnim — 9 Pnim

(idem massless scalar)
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Interpretation of ¥

3. Classical spacetime on familiar scales should be implied when

the universe is large

Wihisd) ~ Acxp (15lhi0 )

= A exp (—%) exp (%)

S satisfies the Lorentzian HJ eq., and if |V.Si| < |[VSRr| so does Sr

LHJ: V51 L VSR

To leading order in A, we can assign a “probability” exp (—251/h)

to the integral curves of Sgr

\ classical histories






