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Gravitational Wave Spectrum

Figure credit: Moore, Cole, Berry (2014); modified by S.R. Taylor



Supermassive Black Hole Binaries



Stochastic Background

Image credit: S. Burke Spolaor 2015

If circular binaries evolve only due to GW 
emission, the stochastic background is

If binaries evolve due to GW emission and 
environmental coupling,
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If binaries are eccentric, there is a 
flattening of the GW spectrum at low 
frequencies.



Cosmic Strings
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Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018

Cosmic strings are spacetime 
defects formed during early-Universe 
phase transitions. 

Small loops emit GWs and decay 
(Vilenkin 1985). 

PTAs can place limits on the 
reconnection probability and string 
tension.



Pulsars
Image credit: Joeri van Leeuwen

Image credit: Lorimer and Kramer, The Handbook of  Pulsar Astronomy

Image credit: Bill Saxton, NRAO/AUI/NSF



Pulsar Timing Arrays

Image credit: NRAO

Gravitational waves induce 
correlated changes in the pulse 
times of arrival.

Image credit: S. Chatterjee



North American Nanohertz 
Observatory for Gravitational Waves

Image credits: NRAO/AUI, NAIC, CHIME Collaboration



Image credits: NRAO/AUI, NAIC, EPTA, ATNF/CSIRO, Google maps

The International Pulsar Timing Array
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Limits on the Stochastic Background

Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018
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Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018
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White noise

Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018
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Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018



Solar System Ephemeris Error
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the same result when 
we include ephemeris 

uncertainty in our model 
through BayesEphem

Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018
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Solar System Ephemeris Error

With longer observation 
times, we can distinguish 
between the stochastic 
background and Solar 
System ephemeris error.

Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018
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GWs from Individual SMBHBs
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An upcoming paper will present limits on 
GWs from individual SMBHBs from the 
NANOGrav 11-yr data set.

We set lower limits on the distances 
to individual SMBHBs for given chirp 
masses.
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Conclusions
• Pulsar timing arrays are sensitive to low-frequency gravitational waves with 

frequencies between 1 nHz and 1 μHz. 

• PTAs detect GWs by looking for correlated changes in the times of arrival 
of pulsars. 

• The primary sources in this band are supermassive black hole binaries. 

• PTAs are already being used to do astrophysics (SMBHBs, cosmic strings). 

• Detection of the stochastic background is expected within the next 3 - 7 
years (Taylor et al. 2016).


