Detecting Low-Frequency Gravitational Waves with Pulsar Timing Arrays

PASCOS 2018, Case Western Reserve University June 6, 2018

Sarah Vigeland, on behalf of the NANOGrav Collaboration Funded under NSF Award 1430284

Gravitational Wave Spectrum

Figure credit: Moore, Cole, Berry (2014); modified by S.R. Taylor

Supermassive Black Hole Binaries

Image credits: J. Cuadra, D. Madison, S. Burke-Spolaor

Stochastic Background

If circular binaries evolve only due to GW emission, the stochastic background is

$$h_c(f) = A_{\rm gw} \left(\frac{f}{f_{1\,\rm yr}}\right)^{-2/3}$$

If binaries evolve due to GW emission and environmental coupling,

$$h_c(f) = A_{gw} \frac{(f/f_{1yr})^{-2/3}}{[1 + (f_b/f)^{\kappa}]^{1/2}}$$

If binaries are eccentric, there is a flattening of the GW spectrum at low frequencies.

Cosmic Strings

Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018

Cosmic strings are spacetime defects formed during early-Universe phase transitions.

Small loops emit GWs and decay (Vilenkin 1985).

PTAs can place limits on the reconnection probability and string tension.

Image credit: Lorimer and Kramer, The Handbook of Pulsar Astronomy

Pulsars

Pulsar Timing Arrays

Gravitational waves induce correlated changes in the pulse times of arrival.

Image credit: S. Chatterjee

Image credit: NRAO

North American Nanohertz Observatory for Gravitational Waves

Image credits: NRAO/AUI, NAIC, CHIME Collaboration

The International Pulsar Timing Array

Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018

Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018

Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018

Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018

Decreased sensitivity at f = 1/(1 yr)

Solar System Ephemeris Error

Different ephemerides give different Bayes factors for a common red process

All ephemerides give the same result when we include ephemeris uncertainty in our model through BayesEphem

Solar System Ephemeris Error

Different ephemerides give different Bayes factors for a common red process

All ephemerides give the same result when we include ephemeris uncertainty in our model through BayesEphem

Solar System Ephemeris Error

Different ephemerides give different Bayes factors for a common red process

All ephemerides give the same result when we include ephemeris uncertainty in our model through BayesEphem

Figure credit: Arzoumanian et al. (The NANOGrav Collaboration), 2018

Solar System Ephemeris Error

With longer observation times, we can distinguish between the stochastic background and Solar System ephemeris error.

GWs from Individual SMBHBs

An upcoming paper will present limits on GWs from individual SMBHBs from the NANOGrav 11-yr data set.

We set lower limits on the distances to individual SMBHBs for given chirp masses.

Conclusions

- Pulsar timing arrays are sensitive to low-frequency gravitational waves with frequencies between 1 nHz and 1 μ Hz.
- PTAs detect GWs by looking for correlated changes in the times of arrival of pulsars.
- The primary sources in this band are supermassive black hole binaries.
- PTAs are already being used to do astrophysics (SMBHBs, cosmic strings).
- Detection of the stochastic background is expected within the next 3 7 \bullet years (Taylor et al. 2016).