Anisotropies in the Gravitational Wave Background from Cosmological Phase Transitions

Michael Geller

University of Maryland and TAU

arXiv:1803.10780 M. G., Anson Hook, Raman Sundrum, Yuhsin Tsai

Gravitational Wave (GW) Cosmology

Different sources of GW in the sky

Astrophysical sources

black hole, neutron star, white dwarf mergers

Study physics of gravity, astro dynamics, QCD,

Gravitational Wave (GW) Cosmology

Different sources of GW in the sky

Cosmological sources

Phase transition (PT), inflation, pre-heating, cosmic string,...

Study physics of inflation/reheating, universe evolution

GW from first order phase transition

Most of the discussions so far have been focusing on GW's energy/frequency spectrum from PT

1512.06239

GW from first order phase transition

However, the anisotropic pattern of GW provides valuable info of inflation/reheating mechanism

many earlier studies on stochastic GWB, e.g., see Romano & Cornish (2017) and the reference there

Gravitational Wave Background (GWB)

Similar to the CMB spectrum, but with photon from last scattering -> GW from PT

hot spot

Higher energy photons
Higher energy GW

where does the hot / cold spot come from?

With a single reheating process

=> GW perturbation is totally correlated to CMB

Iso-curvature perturbation

If in addition to the inflaton, there's an **axion-like particle** fluctuating during inflation

$$V = \Lambda^4 (1 - \sin \frac{a}{f_a})$$

$$\frac{\delta \rho_a}{\rho_a} \sim \frac{\delta V}{V} \sim \frac{H_{\rm inf}}{f_a}$$

can generate larger & uncorrelated perturbations to the inflaton fluctuation

$$C^{cross} \equiv \frac{\langle \rho_{\text{GW}}(1)\rho_{\text{CMB}}(2)\rangle}{\bar{\rho}_{\text{GW}}\bar{\rho}_{\text{CMB}}} = 0$$

uniform temperature surface at T_phase transition

GW perturbation comes from different reheating process => GWB can be `uncorrelated" with CMB

GW provides a probe of the unknown thermal history

GW provides a probe of the unknown thermal history

Existence of cosmological PT?

Is there only one source of the density perturbation?

Is there only one reheating process?

First order phase transition

$$\Gamma(T) = A(T) e^{-S(T)}$$

PT rate as a function of temperature

GW from first order PT

 The collisions of the bubbles generate gravity waves (need quadruple mass for GW)

In the sky today:

 $> 10^{30}$ bubbles from TeV scale PT

Energy density of GW from PT

$$\rho_{\rm GW} \sim \frac{\rho_{PT}^2}{\rho_{total}} \left(H_{PT} \Delta t_{PT} \right)^2$$

$$\rho_{\rm GW}^{today} \approx 0.1 (H_{PT} \Delta t_{PT})^2 \rho_{\gamma} \approx 10^{-5} - 10^{-2} \rho_{\gamma}$$

$$\omega_{\mathrm{GW}}^{today} \sim H_{PT} \left(\frac{T_{\mathrm{CMB}}^{today}}{T_{PT}} \right) \sim \mathrm{mHz} - \mathrm{Hz}$$

$$T_{PT} \sim \mathrm{TeV} - 10^{3} \mathrm{TeV}$$

GW detectors

Laser Interferemeter Space Antenna

Similar ideas, more futuristic

BBO, DECIGO, ALIA

Angular measurement

- Method: variation of strains in time for each polarization mode with different detector location/Doppler shift
- LISA may get to ~ 0.01 steradians ($\ell_{\rm max} = \mathcal{O}(10)$), more detectors (BBO/DECIGO) can do better [Cutler(1997), Giampieri et al (1997)]

Astrophysical foreground

Unresolvable white dwarf merger generates the dominant background to our signal

However, most of these background follow galaxy distribution and can be subtracted with enough data

Adams & Cornish (2013)

Farmer & Phinney (2003)

Energy density of GW from PT

$$\rho_{\rm GW}^{today} \approx 10^{-5} - 10^{-2} \rho_{\gamma}$$

Detection possibility

$$\delta \rho_{\rm GW}^{today} \approx 10^{-10} - 10^{-7} \rho_{\gamma}$$

Detection possibility

$$\delta \rho_{\rm GW}^{today} \approx 10^{-10} - 10^{-7} \rho_{\gamma}$$

Detection possibility

$$\delta \rho_{\rm GW}^{today} \approx 10^{-10} - 10^{-7} \rho_{\gamma}$$

Non-minimal Story

e.g., a curvaton model

$$\delta \rho_{\rm GW} \sim 0.1 \left(\frac{\rho_{\rm VS}}{\rho_{\rm HS}}\right)^2 (H_{PT} \Delta t_{PT})^2 \left(\frac{\delta \rho}{\rho}\right)_{\rm GW} \rho_{\gamma}$$

$$H_{PT}\Delta t_{PT} = 0.1$$

$$\left(\frac{\delta\rho}{\rho}\right)_{\rm GW} = 10^{-4} \quad \frac{\rho_{\rm VS}}{\rho_{\rm HS}} = 0.1$$

Larger energy contrast

~ CMB isocurvature constraint

Visible at BBO up to $\,\ell_{
m max} pprox 100\,$

Conclusion and outlook

Conclusion and outlook

