06/07/2018 PASCOS 2018

Higgs mass, strong CP problem, GUT

Keisuke Harigaya (UC Berkeley, LBNL)

with Lawrence Hall

1803.08119

$V = \lambda_{\rm SM} |H|^4 - m_H^2 |H|$ 2

Today's topic $V = \left(\lambda_{\rm SM} \right) H \vert^4 - m_H^2 \vert H \vert^4$ 2

Assume that the SM is valid up to high energy scale

Small boundary condition

Some new physics to explain λ = 0?

 $H \leftrightarrow H'$ Introduce Z2 symmetry $SU(2) \leftrightarrow SU(2)$ [']

$V(H, H') = \lambda(|H|^2 + |H'|^2)$ $(2)^2 + \lambda' |H|^2 |H'|^2 - m^2(|H|^2 + |H'|^2)$ 2)

Let us assume $m >> v_{EW}$

 $V(H, H') = \lambda(|H|^2 + |H'|^2)$ $(2)^2 + \lambda' |H|^2 |H'|^2 - m^2(|H|^2 + |H'|^2)$ 2)

$$
\langle H' \rangle^2 = \frac{m^2}{2\lambda} \qquad m_H^2 \simeq 0 \to \lambda' \simeq 0
$$

 $V(H, H') \simeq \lambda(|H|^2 + |H'|^2)$ $(2)^2 - m^2(|H|^2 + |H'|^2)$ 2)

Accidentally SU(4) symmetric

 $SU(4)$ -> $SU(3)$ by $\langle H' \rangle$

SM Higgs is a Nambu-Goldstone boson

 $\lambda_{\rm SM}=0$

Fine-tuning

 $V(H, H') = \lambda(|H|^2 + |H'|^2)$ $(2)^2 + \lambda' |H|^2 |H'|^2 - m^2(|H|^2 + |H'|^2)$ 2)

Same as that of SM

Fermions, gauge groups

 $q \leftrightarrow q' = (\bar{u}, \bar{d}), \ell \leftrightarrow \ell' \supset \bar{e}$

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \supset SO(10)$

 $q,\bar{u},\bar{d},q',\bar{u}',\bar{d}',\cdots$

 $SU(3)_c \times SU(3)_c'$ $SU(3)_c$ *U*(1) $U(1) \times U(1)$ $\propto SU(2)_L \times SU(2)' \times \text{or}$

Z_2 from $SO(10)$

Remnant of SO(10) *SO*(10) $H, H' \subset 16$ $q, \ell, q', \ell' = 16$ $q'=(\bar{u},\bar{d})$ d , $\ell' \supset \overline{e}$

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ $SU(3)_c \times SU(2)_L \times U(1)_Y$ $\langle H' \rangle \neq 0$ Left-right symmetry $H \leftrightarrow H'$

Top-down perspective

SUSY GUT

3 parameters 4 parameters g_{GUT} , M_{GUT} , m_{SUSY} *g*₁, *g*₂, *g*₃, *v*_{EW}

GUT here

4 parameters

 $g_{\text{GUT}},~M_{\text{GUT}},~v',~y_t$

5 parameters

 $g_1, g_2, g_3, y_t, \lambda_{\text{higgs}}$

Top-down perspective

SUSY GUT

3 parameters 4 parameters g_{GUT} , M_{GUT} , m_{SUSY} *g*₁, *g*₂, *g*₃, *v*_{EW}

GUT here Altanative to SUSY GUT ?

4 parameters

 $g_{\text{GUT}},~M_{\text{GUT}},~v',~y_t$

5 parameters

 $g_1, g_2, g_3, y_t, \lambda_{\text{higgs}}$

Intermediate Pati-Salam *SO*(10) $H, H' \subset 16$ $q, \ell, q', \ell' = 16$ $q'=(\bar{u},\bar{d})$ d , $\ell' \supset \bar{e}$

 $SU(4) \times SU(2)_L \times SU(2)_R$

 $SU(3)_c \times SU(2)_L \times U(1)_Y$ $\langle H'\rangle =$ $\sqrt{2}$ $0 \quad 0 \quad 0 \quad v'$ 000 0 $H(1,2,1,-\frac{1}{2}) \subset (4,2,1)$ 1 2 $) \subset (4, 2, 1)$ $H'({\bf 1}, 1, 2,$ 1 2 $) \subset (\bar{4}, 1, 2)$

Coupling Unification

v' / GeV

~2σ smaller top mass

Parity and the strong CP problem

(SO(10) is not required)

Parity

 $H(t, x) \leftrightarrow H'(t, -x)$

 $q(t, x) \leftrightarrow i\sigma_2q$ $\overline{}$ $*(t, -x)$

Assume $SU(3) \leftrightarrow SU(3)$

 $G\tilde{G} \rightarrow -G\tilde{G}$

 $\theta_{\rm QCD}=0$

Yukawa coupling?

Ex. Left-Right symmetry

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

$$
\frac{c_{ij}}{M}HH'q_iq'_j \qquad q(t,x) \leftrightarrow i\sigma_2q'^{*}(t,-x)
$$

$$
c=c^\dagger, \arg(\det[c])=0
$$

Also, H and H' has no physical phase dof.

Parity solutions

1978, Beg and Tsao, Mohapatra and Senjanovic

Parity can solve the strong CP problem, $H(2,2)$. Dangerous contribution from complex phase in the Higgs vev (1991, Barr, Chang and Senjanovic)

1989, Babu and Mohapatra

with soft Z₂ breaking $H(2,1) + H'(1,2)$

Embedding into SO(10)

 $q(t,x) \leftrightarrow q'(t,x)$ Part of $SO(10)$

 $q(t, x) \leftrightarrow i\sigma_2 q^*(t, -x)$

 $q(t, x) \leftrightarrow i\sigma_2q$ $\overline{}$ $*(t, -x)$

 $SO(10) \times CP \stackrel{\phi_{45}^-}{\longrightarrow} SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times P_{LR}$

Loop correction to θ

Suppressed by loop factors, flavor mixing

 $\delta\theta \sim 10^{-11}$

Fermions

Doublets have Z2 partners

 $q, \ell \leftrightarrow q', \ell'$ TABLE II. Doublet fields: the four possible *SU*(3)*^c* ⇥ *SU*(2)*^L* ⇥ *SU*(2)⁰ ⇥ *U*(1) assignments for the

$$
q({\bf 3},2,1,\frac{1}{6}), \ell({\bf 1},2,1,-\frac{1}{2}), H({\bf 1},2,1,-\frac{1}{2})
$$

*Z*² partners of *q*(3*,* 2*,* 1*,*

$$
\begin{array}{|c|c|c|c|c|} \hline & {\rm A}(-,-) & {\rm B}(+,-) & {\rm C}(-,+) & {\rm D}(+,+) \\ \hline q' & (\mathbf{\bar{3}},1,2,-\tfrac{1}{6}) & (\mathbf{3},1,2,-\tfrac{1}{6}) & (\mathbf{\bar{3}},1,2,\tfrac{1}{6}) & (\mathbf{3},1,2,\tfrac{1}{6}) \\ \ell',H' & (\mathbf{1},1,2,\tfrac{1}{2}) & (\mathbf{1},1,2,\tfrac{1}{2}) & (\mathbf{1},1,2,-\tfrac{1}{2}) & (\mathbf{1},1,2,-\tfrac{1}{2}) \\ \hline \end{array}
$$

*Z*² partners of *q*(3*,* 2*,* 1*,* ⁶), `(1*,* ²*,* ¹*,* ¹ ²) and *^H*(1*,* ²*,* ¹*,* ¹ 2). A(*,*) B(+*,*) C(*,* +) D(+*,* +) *^q*⁰ (¯3*,* ¹*,* ²*,* ¹ ⁶) (3*,* ¹*,* ²*,* ¹ ⁶) (¯3*,* ¹*,* ²*,* 1 ⁶) (3*,* 1*,* 2*,* 1 6) `0 *, H*0 (1*,* 1*,* 2*,* 1 ²) (1*,* 1*,* 2*,* 1 ²) (1*,* ¹*,* ²*,* ¹ ²) (1*,* ¹*,* ²*,* ¹ 2) *q*(3*,* 2*,* 1*,* 1 6)*,* `(1*,* ²*,* ¹*,* ¹ 2)*, H*(1*,* ²*,* ¹*,* ¹ 2)

TABLE II. Doublet fields: the four possible *SU*(3)*^c* ⇥ *SU*(2)*^L* ⇥ *SU*(2)⁰ ⇥ *U*(1) assignments for the

q', l' are identified with $SU(2)_L$ singlet SM fermions A: almost vector-like and anomaly free.

of *SU*(2)*^L* as *SU*(2)*R*. In the second sub-section we study models B, C and D. $SU(2)' = SU(2)_R, U(1) \sim U(1)_{B-L}$

$$
\mathcal{L} = \frac{1}{M} (q \tilde{y_u} q') H^{\dagger} H^{'\dagger} + \frac{1}{M} (q \tilde{y_d} q') H H'
$$

1

 \mathcal{Y} yukawa couplings, there are interactions between fermions and scalars at dimension \mathcal{Y}

1

*H*0

1

*Z*² partners of *q*(3*,* 2*,* 1*,* ⁶), `(1*,* ²*,* ¹*,* ¹ ²) and *^H*(1*,* ²*,* ¹*,* ¹ 2). A(*,*) B(+*,*) C(*,* +) D(+*,* +) *^q*⁰ (¯3*,* ¹*,* ²*,* ¹ ⁶) (3*,* ¹*,* ²*,* ¹ ⁶) (¯3*,* ¹*,* ²*,* 1 ⁶) (3*,* 1*,* 2*,* 1 6) `0 *, H*0 (1*,* 1*,* 2*,* 1 ²) (1*,* 1*,* 2*,* 1 ²) (1*,* ¹*,* ²*,* ¹ ²) (1*,* ¹*,* ²*,* ¹ 2) *q*(3*,* 2*,* 1*,* 1 6)*,* `(1*,* ²*,* ¹*,* ¹ 2)*, H*(1*,* ²*,* ¹*,* ¹ 2)

TABLE II. Doublet fields: the four possible *SU*(3)*^c* ⇥ *SU*(2)*^L* ⇥ *SU*(2)⁰ ⇥ *U*(1) assignments for the

c C C and D and D and D and D and the first sub-section we study model A N form i.o. notes that *Z* N **Example 1.** B, C, D: needs extra fermion which are identified with $SU(2)$ _L singlet SM fermions

of *SU*(2)*^L* as *SU*(2)*R*. In the second sub-section we study models B, C and D.

$$
\mathcal{L} = Hq\bar{u} + H'q'\bar{u}' + \cdots
$$

$$
\bar{u} \leftrightarrow \bar{u}'
$$

1

 \mathcal{Y} yukawa couplings, there are interactions between fermions and scalars at dimension \mathcal{Y}

1

*H*0

1

Parity and the strong CP problem $q(t, x) \leftrightarrow i\sigma_2q$ $\overline{}$ $^*(t, -x)$

Model A

$$
\mathcal{L} = \frac{1}{M} (q\tilde{y_u}q')H^{\dagger}H^{'\dagger} + \frac{1}{M} (q\tilde{y_d}q')HH' + \text{h.c.}
$$

$$
\tilde{y}^{\dagger} = \tilde{y}, \text{ real } \det \tilde{y}
$$

$$
\theta G\tilde{G} : \theta = 0
$$

Strong CP problem is solved!

Parity and the strong CP problem $q(t, x) \leftrightarrow i\sigma_2q$ $\overline{}$ $^*(t, -x)$

Model B,C

 $\mathcal{L} = yHQ\bar{u} + y^*H'Q'\bar{u}' + y^*H^\dagger Q^\dagger\bar{u}^\dagger + yH^\dagger Q^{'\dagger}\bar{u}^\dagger$ $det y \times det y^*$ is real

Cancellation between the SM and partners

$$
Parity and the strong CP problem
$$
\n
$$
q(t, x) \leftrightarrow i\sigma_2 q' * (t, -x)
$$

Model D

$$
\frac{q({\bf 3},2,1,\frac{1}{6}),\ell({\bf 1},2,1,-\frac{1}{2}),H({\bf 1},2,1,-\frac{1}{2})}{A(-,-)}\frac{B(+,-)}{B(+,-)}\frac{C(-,+)}{C(-,+)}\frac{D(+,+)}{D(+,+)}\\ q'\left| (\mathbf{\bar{3}},1,2,-\frac{1}{6})\right|({\bf \bar{3}},1,2,-\frac{1}{6})}(\mathbf{\bar{3}},1,2,\frac{1}{6})\frac{({\bf \bar{3}},1,2,\frac{1}{6})}{({\bf 1},1,2,-\frac{1}{2})}\frac{({\bf 3},1,2,\frac{1}{6})}{({\bf 1},1,2,-\frac{1}{2})}
$$

in models B, C and D. In the first sub-section we study Model A and identify the *Z*² partner $\mathcal{L} = yHq\bar{u} + y^*H'q'\bar{u}' + \lambda Hq\bar{u}' + \lambda^*H'q'\bar{u} + \text{h.c.}$

$$
\det\begin{pmatrix}y & \lambda \\ \lambda^* & y^*\end{pmatrix} = \det\begin{pmatrix}\lambda & y \\ y^* & \lambda^*\end{pmatrix} = \det\begin{pmatrix}y^* & \lambda^* \\ \lambda & y\end{pmatrix} = \det\begin{pmatrix}y & \lambda \\ \lambda^* & y^*\end{pmatrix}^*
$$

Yukawa couplings

X

TABLE III. Possible *X* particles for generating Yukawa couplings in Model A.

Yukawa couplings

X

Small enough not to blow up the gauge coupling

CKM phase

 $SO(10) \times CP \stackrel{\phi_{45}^{-}}{\longrightarrow} SU(3) \times SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L} \times P_{LR}$

Real yukawa without CP symmetry breaking

A simple example

 $\mathcal{L} = \left(M^{ij} + i \lambda^{ij} \phi_{45} \right) X_{10,i} X_{10,j}$

 $m^2 \ll \Lambda_c^2$ cut

More Fine-tuned than SM?

No.

$$
\frac{v_{\text{EW}}^2}{m^2} \times \frac{m^2}{\Lambda_{\text{cut}}^2} \sim \frac{v_{\text{EW}}^2}{\Lambda_{\text{cut}}^2}
$$

$$
y \simeq 2\lambda \quad m^2 \ll \Lambda_{\text{cut}}^2
$$

How non-trivial?

Ex. SUSY GUT

3 parameters

*g*GUT*, M_{GUT}*, *m_{SUSY}*

4 parameters

*g*1*, g*2*, g*3*, v*EW

How non-trivial?

4 parameters

 $g_{\text{GUT}},~M_{\text{GUT}},~v',~y_t$

5 parameters

 $g_1, g_2, g_3, y_t, \lambda_{\text{higgs}}$

Altanative to SUSY GUT ?

Coupling Unification

Correction to the gauge coupling unification by high dimensional operator

 $SO(10)$ $\overset{\phi_{210}}{\longrightarrow}$ \longrightarrow *SU*(3) \times *SU*(2)_{*L*} \times *SU*(2)_{*R*} \times *U*(1)_{*B*-*L*} \times *C*_{*LR*}

$$
\frac{210^{abcd}}{M_*}F_{10}^{ab}F_{10}^{cd} \qquad \Delta\left(\frac{2\pi}{\alpha}\right) \lesssim 10
$$

 $SO(10) \times CP \stackrel{\phi_{45}}{\longrightarrow} SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times P_{LR}$

$$
\frac{45^{ac}}{M_{*}}\frac{45^{bd}}{M_{*}}F_{10}^{ab}F_{10}^{cd} \qquad \Delta\left(\frac{2\pi}{\alpha}\right) \lesssim 1
$$

Correction to the gauge coupling unification by high dimensional operator

 $SO(10)$ $\frac{\phi_{54}}{2}$ \longrightarrow *SU*(4) \times *SU*(2)_{*L*} \times *SU*(2)_{*R*} \times *C_{LR}*

$$
\frac{54^{ab}}{M_{*}}F_{10}^{ac}F_{10}^{bc} \qquad \Delta\left(\frac{2\pi}{\alpha}\right) \lesssim 1
$$

 $SO(10) \times CP \stackrel{\phi_{210}}{\longrightarrow} SU(4) \times SU(2)_L \times SU(2)_R \times P_{LR}$

210 M_* 210 M_* $F_{10}F_{10}$ Δ

$$
\Delta\left(\frac{2\pi}{\alpha}\right)\ll 1
$$