#### 06/07/2018 PASCOS 2018

# Higgs mass, strong CP problem, GUT

Keisuke Harigaya (UC Berkeley, LBNL)

with Lawrence Hall

1803.08119

# $V = \lambda_{\rm SM} |H|^4 - m_H^2 |H|^2$

# $V = \sum_{N \in \mathcal{N}} |H|^4 - m_H^2 |H|^2$ Today's topic

Assume that the SM is valid up to high energy scale



## Small boundary condition



# Some new physics to explain $\lambda = 0$ ?



Introduce Z2 symmetry  $H \leftrightarrow H'$  $SU(2) \leftrightarrow SU(2)'$ 

#### $V(H, H') = \lambda(|H|^2 + |H'|^2)^2 + \lambda'|H|^2|H'|^2 - m^2(|H|^2 + |H'|^2)$

Let us assume m >> v<sub>EW</sub>

 $V(H, H') = \lambda(|H|^2 + |H'|^2)^2 + \lambda'|H|^2|H'|^2 - m^2(|H|^2 + |H'|^2)$ 

$$\langle H' \rangle^2 = \frac{m^2}{2\lambda} \qquad \qquad m_H^2 \simeq 0 \to \lambda' \simeq 0$$

 $V(H, H') \simeq \lambda (|H|^2 + |H'|^2)^2 - m^2 (|H|^2 + |H'|^2)$ 

Accidentally SU(4) symmetric

 $SU(4) \rightarrow SU(3)$  by  $\langle H' \rangle$ 

SM Higgs is a Nambu-Goldstone boson

 $\lambda_{\rm SM} = 0$ 





# Fine-tuning

 $V(H, H') = \lambda(|H|^2 + |H'|^2)^2 + \lambda'|H|^2|H'|^2 - m^2(|H|^2 + |H'|^2)$ 



Same as that of SM

## Fermions, gauge groups

 $q \leftrightarrow q' = (\bar{u}, \bar{d}), \ \ell \leftrightarrow \ell' \supset \bar{e}$ 

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \supset SO(10)$ 

 $q, \bar{u}, d, q', \bar{u}', d', \cdots$ 

 $SU(3)_c$ or  $SU(2)_L \times SU(2)' \times Or$   $SU(3)_c \times SU(3)'_c$   $U(1) \times U(1)'$   $U(1) \times U(1)'$ 



# $Z_2 \text{ from } SO(10)$

# Remnant of SO(10) SO(10) $H, H' \subset 16$ $q, \ell, q', \ell' = 16$ $q' = (\bar{u}, \bar{d}), \ell' \supset \bar{e}$

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$  Left-right symmetry  $H \leftrightarrow H'$   $\langle H' \rangle \neq 0$   $SU(3)_c \times SU(2)_L \times U(1)_Y$ 





# Top-down perspective

SUSY GUT

3 parameters  $g_{\text{GUT}}, M_{\text{GUT}}, m_{\text{SUSY}}$ 



4 parameters

 $g_1, g_2, g_3, v_{\rm EW}$ 

**GUT** here

4 parameters

 $g_{\rm GUT}, M_{\rm GUT}, v', y_t$ 

5 parameters

 $g_1, g_2, g_3, y_t, \lambda_{\text{higgs}}$ 

# Top-down perspective

SUSY GUT

3 parameters  $g_{\text{GUT}}, M_{\text{GUT}}, m_{\text{SUSY}}$ 



4 parameters

 $g_1, g_2, g_3, v_{\rm EW}$ 

GUT here Altanative to SUSY GUT?

4 parameters

 $g_{\rm GUT}, M_{\rm GUT}, v', y_t$ 

5 parameters

 $g_1, g_2, g_3, y_t, \lambda_{\text{higgs}}$ 

## Intermediate Pati-Salam SO(10) $H, H' \subset 16$ $q, \ell, q', \ell' = 16$ $q' = (\bar{u}, \bar{d}), \ell' \supset \bar{e}$

 $SU(4) \times SU(2)_L \times SU(2)_R$ 

 $\begin{array}{c|c} H(1,2,1,-\frac{1}{2}) \subset (4,2,1) \\ H'(1,1,2,\frac{1}{2}) \subset (\bar{4},1,2) \end{array} & & & & & & \\ SU(3)_c \times SU(2)_L \times U(1)_Y \end{array} = \begin{pmatrix} 0 & 0 & 0 & v' \\ 0 & 0 & 0 & 0 \end{pmatrix}$ 

# **Coupling Unification**







 $-2\sigma$  smaller top mass



# Parity and the strong CP problem

(SO(10) is not required)

Parity

 $H(t,x) \leftrightarrow H'(t,-x)$ 



 $q(t,x) \leftrightarrow i\sigma_2 q'^*(t,-x)$ 

Assume  $SU(3) \leftrightarrow SU(3)$ 

 $G\tilde{G} \rightarrow -G\tilde{G}$ 

 $\theta_{\rm QCD} = 0$ 

## Yukawa coupling?

Ex. Left-Right symmetry

 $SU(3)_c \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ 

$$\frac{c_{ij}}{M}HH'q_iq'_j \qquad q(t,x) \leftrightarrow i\sigma_2 q'^*(t,-x)$$

$$c = c^{\dagger}, \arg(\det[c]) = 0$$

Also, H and H' has no physical phase dof.

# Parity solutions

\* 1978, Beg and Tsao, Mohapatra and Senjanovic

Parity can solve the strong CP problem, H(2,2). Dangerous contribution from complex phase in the Higgs vev (1991, Barr, Chang and Senjanovic)

\* 1989, Babu and Mohapatra

H(2,1) + H'(1,2)with soft Z<sub>2</sub> breaking

## Embedding into SO(10)

 $q(t,x) \leftrightarrow q'(t,x)$ Part of SO(10)

 $q(t,x) \leftrightarrow i\sigma_2 q^*(t,-x)$ 

 $q(t,x) \leftrightarrow i\sigma_2 q'^*(t,-x)$ 

 $SO(10) \times CP \xrightarrow{\phi_{45}} SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times P_{LR}$ 

### Loop correction to $\theta$

#### Suppressed by loop factors, flavor mixing

 $\delta\theta \sim 10^{-11}$ 



#### Fermions

Doublets have Z2 partners

 $q, \ell \leftrightarrow q', \ell'$ 

$$q(\mathbf{3}, 2, 1, \frac{1}{6}), \ell(\mathbf{1}, 2, 1, -\frac{1}{2}), H(\mathbf{1}, 2, 1, -\frac{1}{2})$$

$$A(-,-)$$
 $B(+,-)$  $C(-,+)$  $D(+,+)$  $q'$  $(\bar{\mathbf{3}}, 1, 2, -\frac{1}{6})$  $(\mathbf{3}, 1, 2, -\frac{1}{6})$  $(\bar{\mathbf{3}}, 1, 2, \frac{1}{6})$  $(\mathbf{3}, 1, 2, \frac{1}{6})$  $\ell', H'$  $(\mathbf{1}, 1, 2, \frac{1}{2})$  $(\mathbf{1}, 1, 2, \frac{1}{2})$  $(\mathbf{1}, 1, 2, -\frac{1}{2})$  $(\mathbf{1}, 1, 2, -\frac{1}{2})$ 

$$\begin{array}{c|c} q(\mathbf{3},2,1,\frac{1}{6}), \ell(\mathbf{1},2,1,-\frac{1}{2}), H(\mathbf{1},2,1,-\frac{1}{2}) \\ \hline & \mathbf{A}(-,-) & \mathbf{B}(+,-) & \mathbf{C}(-,+) & \mathbf{D}(+,+) \\ \hline & q' & (\mathbf{\bar{3}},1,2,-\frac{1}{6}) & (\mathbf{3},1,2,-\frac{1}{6}) & (\mathbf{\bar{3}},1,2,\frac{1}{6}) & (\mathbf{3},1,2,\frac{1}{6}) \\ \hline & \ell', H' & (\mathbf{1},1,2,\frac{1}{2}) & (\mathbf{1},1,2,\frac{1}{2}) & (\mathbf{1},1,2,-\frac{1}{2}) & (\mathbf{1},1,2,-\frac{1}{2}) \end{array}$$

A: almost vector-like and anomaly free. q', l' are identified with SU(2)<sub>L</sub> singlet SM fermions

 $SU(2)' = SU(2)_R, U(1) \sim U(1)_{B-L}$ 

$$\mathcal{L} = \frac{1}{M} (q \tilde{y_u} q') H^{\dagger} H'^{\dagger} + \frac{1}{M} (q \tilde{y_d} q') H H'$$

$$\begin{array}{c|c} q(\mathbf{3},2,1,\frac{1}{6}), \ell(\mathbf{1},2,1,-\frac{1}{2}), H(\mathbf{1},2,1,-\frac{1}{2}) \\ \hline & \mathbf{A}(-,-) & \mathbf{B}(+,-) & \mathbf{C}(-,+) & \mathbf{D}(+,+) \\ \hline & q' & (\mathbf{\bar{3}},1,2,-\frac{1}{6}) & (\mathbf{3},1,2,-\frac{1}{6}) & (\mathbf{\bar{3}},1,2,\frac{1}{6}) & (\mathbf{3},1,2,\frac{1}{6}) \\ \hline & \ell', H' & (\mathbf{1},1,2,\frac{1}{2}) & (\mathbf{1},1,2,\frac{1}{2}) & (\mathbf{1},1,2,-\frac{1}{2}) & (\mathbf{1},1,2,-\frac{1}{2}) \end{array}$$

B, C, D: needs extra fermion which are identified with  $SU(2)_L$  singlet SM fermions

$$\mathcal{L} = Hq\bar{u} + H'q'\bar{u}' + \cdots$$
$$\bar{u} \leftrightarrow \bar{u}'$$

#### Parity and the strong CP problem $q(t, x) \leftrightarrow i\sigma_2 q^{'*}(t, -x)$

#### Model A

$$\mathcal{L} = \frac{1}{M} (q \tilde{y}_u q') H^{\dagger} H'^{\dagger} + \frac{1}{M} (q \tilde{y}_d q') H H' + \text{h.c.}$$
$$\tilde{y}^{\dagger} = \tilde{y}, \text{ real } \det \tilde{y}$$
$$\theta G \tilde{G} : \theta = 0$$

Strong CP problem is solved!

#### Parity and the strong CP problem $q(t, x) \leftrightarrow i\sigma_2 q'^*(t, -x)$

Model B,C

 $\mathcal{L} = yHQ\bar{u} + y^*H'Q'\bar{u}' + y^*H^{\dagger}Q^{\dagger}\bar{u}^{\dagger} + yH'^{\dagger}Q'^{\dagger}\bar{u}'^{\dagger}$  $\det y \times \det y^* \text{ is real}$ 

#### Cancellation between the SM and partners

### Parity and the strong CP problem $q(t, x) \leftrightarrow i\sigma_2 q^{'*}(t, -x)$

Model D

| $q(3,2,1,\frac{1}{6}), \ell(1,2,1,-\frac{1}{2}), H(1,2,1,-\frac{1}{2})$ |                                 |                           |                                              |                           |  |  |
|-------------------------------------------------------------------------|---------------------------------|---------------------------|----------------------------------------------|---------------------------|--|--|
|                                                                         | A(-,-)                          | B(+,-)                    | $\mathrm{C}(-,+)$                            | D(+,+)                    |  |  |
| q'                                                                      | $(\bar{3}, 1, 2, -\frac{1}{6})$ | $(3, 1, 2, -\frac{1}{6})$ | $(\mathbf{\overline{3}}, 1, 2, \frac{1}{6})$ | $(3, 1, 2, \frac{1}{6})$  |  |  |
| $\ell', H'$                                                             | $(1,1,2,rac{1}{2})$            | $(1,1,2,rac{1}{2})$      | $(1, 1, 2, -\frac{1}{2})$                    | $(1, 1, 2, -\frac{1}{2})$ |  |  |

 $\mathcal{L} = yHq\bar{u} + y^*H'q'\bar{u}' + \lambda Hq\bar{u}' + \lambda^*H'q'\bar{u} + h.c.$ 

$$\det \begin{pmatrix} y & \lambda \\ \lambda^* & y^* \end{pmatrix} = \det \begin{pmatrix} \lambda & y \\ y^* & \lambda^* \end{pmatrix} = \det \begin{pmatrix} y^* & \lambda^* \\ \lambda & y \end{pmatrix} = \det \begin{pmatrix} y & \lambda \\ \lambda^* & y^* \end{pmatrix}^*$$

# Yukawa couplings

X

|          | $SU(3)_c$ | $SU(2)_L$ | $SU(2)_R$ | U(1) | SU(4)                 | SO(10)                                               | coupling                                                       |
|----------|-----------|-----------|-----------|------|-----------------------|------------------------------------------------------|----------------------------------------------------------------|
| up       | 3         | 1         | 1         | 2/3  | 15                    | 45                                                   | $\left  \bar{X}qH^{\dagger} + Xq'H'^{\dagger} \right $         |
|          | 3         | 2         | <b>2</b>  | -1/3 | 6/10                  | 45, 54, 210/210                                      | $\bar{X}qH^{\prime\dagger} + Xq^{\prime}H^{\dagger}$           |
| down     | 3         | 1         | 1         | -1/3 | 6/10                  | 10, 126/120                                          | $\bar{X}qH + Xq'H'$                                            |
|          | 3         | 2         | 2         | 2/3  | 15                    | 120, 126                                             | $\bar{X}qH' + Xq'H$                                            |
| electron | 1         | 1         | 1         | -1   | 10                    | 120                                                  | $\bar{X}\ell H + X\ell' H'$                                    |
|          | 1         | 2         | 2         | 0    | $\fbox{1/15}$         | $egin{array}{ c c c c c c c c c c c c c c c c c c c$ | $X\ell H' + X\ell' H$                                          |
| neutrino | 1         | 1         | 1         | 0    | $\left  1/15 \right $ | $\left  1, 54, 210/45, 210 \right $                  | $\left  X(\ell H^{\dagger} + \ell' H'^{\dagger}) \right $      |
|          | 1         | 2         | 2         | -1   | 10                    | 210                                                  | $\left  \bar{X}\ell H'^{\dagger} + X\ell' H^{\dagger} \right $ |
|          | 1         | 3         | 1         | 0    | 1                     | 45                                                   | $X\ell H^{\dagger}$                                            |
|          | 1         | 1         | 3         | 0    | 1                     | 45                                                   | $X\ell' H'^{\dagger}$                                          |

# Yukawa couplings

X

Small enough not to blow up the gauge coupling

|          | $SU(3)_c$ | $SU(2)_L$ | $SU(2)_R$ | U(1) | SU(4) | SO(10)               | coupling                                                            |
|----------|-----------|-----------|-----------|------|-------|----------------------|---------------------------------------------------------------------|
| up       | 3         | 1         | 1         | 2/3  | 15    | (45)                 | $\left  \bar{X}qH^{\dagger} + Xq'H'^{\dagger} \right $              |
|          | 3         | 2         | 2         | -1/3 | 6/10  | 45, 54, 210/210      | $\left  \bar{X}qH^{\prime\dagger} + Xq^{\prime}H^{\dagger} \right $ |
| down     | 3         | 1         | 1         | -1/3 | 6/10  | 10,126/120           | $\bar{X}qH + Xq'H'$                                                 |
|          | 3         | 2         | 2         | 2/3  | 15    | 120,126              | $\bar{X}qH' + Xq'H$                                                 |
| electron | 1         | 1         | 1         | -1   | 10    | 120                  | $\left  \bar{X}\ell H + X\ell' H' \right $                          |
|          | 1         | 2         | 2         | 0    | 1/15  | 10, 120/120, 126     | $\left  X\ell H' + X\ell' H \right $                                |
| neutrino | 1         | 1         | 1         | 0    | 1/15  | [1, 54, 210/45, 210] | $\left  X(\ell H^{\dagger} + \ell' H'^{\dagger}) \right $           |
|          | 1         | 2         | 2         | -1   | 10    | 210                  | $\left  \bar{X}\ell H'^{\dagger} + X\ell' H^{\dagger} \right $      |
|          | 1         | 3         | 1         | 0    | 1     | 45                   | $X\ell H^{\dagger}$                                                 |
|          | 1         | 1         | 3         | 0    | 1     | 45                   | $X\ell' H'^{\dagger}$                                               |

# CKM phase

 $SO(10) \times CP \xrightarrow{\phi_{45}} SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times P_{LR}$ 

Real yukawa without CP symmetry breaking

A simple example

 $\mathcal{L} = \left( M^{ij} + i\lambda^{ij}\phi_{45} \right) X_{10,i} X_{10,j}$ 

 $m^2 \ll \Lambda_{\rm cut}^2$ 

### More Fine-tuned than SM?

No.

$$\frac{v_{\rm EW}^2}{m^2} \times \frac{m^2}{\Lambda_{\rm cut}^2} \sim \frac{v_{\rm EW}^2}{\Lambda_{\rm cut}^2}$$
$$\frac{v_{\rm EW}^2}{\Lambda_{\rm cut}^2}$$

#### How non-trivial?

#### Ex. SUSY GUT

3 parameters

 $g_{\rm GUT}, M_{\rm GUT}, m_{\rm SUSY}$ 



4 parameters

 $g_1, g_2, g_3, v_{\rm EW}$ 

#### How non-trivial?

4 parameters

 $g_{\rm GUT}, M_{\rm GUT}, v', y_t$ 



5 parameters

 $g_1, g_2, g_3, y_t, \lambda_{\text{higgs}}$ 

Altanative to SUSY GUT?

# **Coupling Unification**





Correction to the gauge coupling unification by high dimensional operator

 $SO(10) \xrightarrow{\phi_{210}} SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times C_{LR}$ 

$$\frac{210^{abcd}}{M_*} F_{10}^{ab} F_{10}^{cd} \qquad \Delta\left(\frac{2\pi}{\alpha}\right) \lesssim 10$$

 $SO(10) \times CP \xrightarrow{\phi_{45}} SU(3) \times SU(2)_L \times SU(2)_R \times U(1)_{B-L} \times P_{LR}$ 

$$\frac{45^{ac}}{M_*} \frac{45^{bd}}{M_*} F_{10}^{ab} F_{10}^{cd} \qquad \Delta\left(\frac{2\pi}{\alpha}\right) \lesssim 1$$

Correction to the gauge coupling unification by high dimensional operator

 $SO(10) \xrightarrow{\phi_{54}} SU(4) \times SU(2)_L \times SU(2)_R \times C_{LR}$ 

 $\frac{54^{ab}}{M}F_{10}^{ac}F_{10}^{bc}$  $\Delta\left(\frac{2\pi}{\alpha}\right) \lesssim 1$ 

 $SO(10) \times CP \xrightarrow{\phi_{210}} SU(4) \times SU(2)_L \times SU(2)_R \times P_{LR}$ 

 $\frac{210}{M_*} \frac{210}{M_*} F_{10} F_{10}$ 

 $\Delta\left(\frac{2\pi}{\alpha}\right) \ll 1$