Cosmological Signatures in Mirror Twin Higgs Models

Yuhsin Tsai University of Maryland

arXiv:1803.03263, Z. Chacko, D. Curtin, M. Geller, YT

PASCOS, 2018

Hidden Naturalness scenario

One solution to the hierarchy problem: Supersymmetry

Super particle loops cancel the divergence

Partner fields in a different gauge sector

A concrete example: Twin Higgs

Chacko, Goh, Harnik (2005)

Study Dark Particles through gravity perturbation

Cosmological Signature from Hidden Naturalness

Mirror universe cannot be identical to the SM universe

From existing experimental constraints,

Higgs coupling measurement

 $rac{v_{
m Mir}}{v_{
m SM}} \ge 3$

mirror particles are heavier

CMB constraint

 $\frac{T_{\rm Mir}}{T_{\rm CM}} < 0.5$ mirror temperature is lower

Mirror cosmology is different from SM cosmology

Dark radiation, asymmetric reheating

 $\hat{\gamma} \hat{\nu}$

A long time ago, when T ~ MeV (~1 sec)

GARDIANS OF THE ELECTROWEAK FORCE

A long time ago, in a hidden universe that is so close to us

There are twin particles maintaining the stability of the Universe

SM (p, n, e, γ, ν) Mirror $(\hat{p}, \hat{n}, \hat{e}, \hat{\gamma}, \hat{\nu})$

Big-bang Nucleosynthesis (~1 sec, T ~ MeV)

Nucleosynthesis

Two important BBN processes

A rough estimation of twin baryon masses

twin neutron/proton mass splitting

 $\frac{m_{\hat{p}}}{m_p} \approx \frac{m_{\hat{n}}}{m_n} \approx \frac{\Lambda_{QCD_B}}{\Lambda_{QCD_A}} \approx 0.68 + 0.41 \log(1.32 + v_B/v_A)$ from RGE

twin deuterium binding energy

$$\frac{\Delta M_{\hat{n}\hat{p}}}{\Delta M_{np}} \approx 1.68 v_B / v_A - 0.68, \qquad \Delta M_{np} = 1.29 \,\mathrm{MeV}.$$

from lattice result, Borsanyi et al. (2014)

For $v_B/v_A = 3$, twin proton ~ 30% heavier than SM proton twin neutron/proton splitting ~ 5.6 MeV

Mirror Deuterium Bottleneck

Mirror helium dominates twin matter density

Mirror: ~ 75% mass is in mirror He SM: ~ 75% mass is in Hydrogen

The result will determine the Large Scale Structure of Universe

Era for the Large Scale Structure & CMB

Large Scale Structure of the Universe

Density Perturbation

$$\delta_{i} \equiv \frac{\delta \rho_{i}}{\bar{\rho}_{i}} \\ _{i = \text{DM, } \gamma, b, \nu}$$

Space Time

Matter power spectrum of the Universe

$$P(k)_s \propto k^{-3} \langle \delta_s(k,a)^2 \rangle$$

DES: 1507.05552

Density Perturbation

$$\delta_{i} \equiv \frac{\delta \rho_{i}}{\bar{\rho}_{i}} = \text{DM, } \gamma, b, \nu$$

Fourier transform into frequency modes

 $\delta_i(x,a) \to \delta_i(k,a)$

Structure formation of collision-less DM

~ linear growth in matter-domination era

Structure formation of mirror baryons

Scattering forbids mirror baryons to form structure

Twin baryon acoustic oscillations suppress DM density perturbation

How much mirror baryon can we have?

The twin recombination

Similar to SM $H^+ + e^- \rightarrow H^0 + \gamma + (\gamma)$

Quantify the suppression of matter structure

With mirror oscillations
$$\delta_{tot}(k) = \sum_{i=\chi,\hat{b},p} (\Omega_i/\Omega_m) \, \delta_i(k),$$
P.S. Ratio $(k) \equiv \frac{\delta_{tot}^2(k) \Big|_{\Lambda \text{CDM} + \text{MTH}}}{\delta_{tot}^2(k) \Big|_{\Lambda \text{CDM} + \text{DR}}}$ Without mirror oscillationsWithout mirror oscillations

Suppression of the Large Scale Structure

Suppression of the Large Scale Structure

Oscillation pattern

Behave as Cold DM after recombination

Precision measurement of the LSS

percent level precision in ~ 10 years

LSS constraint on mirror particle density

Current bound $\Omega_{\hat{H}+\hat{He}}/\Omega_{DM} < 10\%$ Future bound, < 1 %

LSS constraint on mirror particle density

 $\Omega_{\hat{H}+\hat{H}e}/\Omega_{DM} \simeq 5\%$ may address the (σ_8, H_0) puzzle?

Formation of the small scale structures

Re-ionization of twin atoms

Twin baryon profile before cooling

either adiabatic or isothermal distribution

Small scale structure, mirror disc? (preliminary)

Isothermal

Adiabatic

There is a chance to form a Twin disc Gaia survey only allows 1% of DM forming a disc More study is needed to see if twin disc can form Schutz et. al. (2017)

Conclusion

- Twin Higgs scenarios solve little hierarchy problem with a dark sector that contains dark QCD
- We can use cosmological data or Long-lived Particle searches to examine the idea
- Mirror Twin Higgs model gives predictable signatures in Large Scale Structure, CMB, Small Scale Structure observations