Disorder at the LHC

Matthew Low

Institute for Advanced Study

in progress with

Raffaele Tito D'Agnolo

Motivation

 \blacktriangleright Why haven't we seen anything at the LHC?

Motivation

- \blacktriangleright Why haven't we seen anything at the LHC?
	- \blacktriangleright *Possibility 1:* There is nothing to see.

Motivation

- In Why haven't we seen anything at the LHC?
	- \blacktriangleright *Possibility 1:* There is nothing to see.

 \triangleright *Possibility 2:* There are too many new particles.

Large N

 \blacktriangleright Consider N new states

 \blacktriangleright With $\mathcal{L}_{int} = hy\bar{\psi}_i\psi_i$

 \blacktriangleright For perturbativity

$$
y \sim \frac{1}{\sqrt{N}}
$$

 \triangleright Production rate can still be sizable

$$
\sigma_{\rm tot} \sim \sum_{i=1}^{N} y^2 \sigma_h \sim (Ny^2) \sigma_h
$$

Large N

.

. .

out of reach **I** Perhaps only the bottom of the spectrum is accessible

$$
\sigma_{\text{acc}} \sim y^2 \sigma_h \sim \frac{1}{N} \sigma_h
$$

$$
\Gamma_{\rm inv} \sim \frac{y^2}{y_b^2} \Gamma_{bb} \sim \frac{1}{N} \Gamma_{bb}
$$

► Heavy states lead to cascade decays (given couplings among new sector)

- - \blacktriangleright Many low p_T final state particles
	- \triangleright Diffuse signal, hard for triggers
- \triangleright Light states have short decay chains
	- \blacktriangleright Little visible and little missing energy
	- ▶ Hard to extract from backgrounds

Matthew Low (IAS) [Disorder at the LHC](#page-0-0) June 7, 2018 3

Toy Model

If Consider a toy model with two accessible real scalars ϕ_1 and ϕ_2

$$
\mathcal{L}_{\text{int}} = (y_1 \phi_1^2 + y_{12} \phi_1 \phi_2 + y_2 \phi_2^2)|H|^2
$$

 \triangleright Decays to ϕ_1 and offshell Higgs

► Have $pp \to \phi_2 \phi_2 \to (\phi_1 b\bar{b})(\phi_1 b\bar{b})$ $\rightarrow 4b + \not{E}_T$

 \blacktriangleright Consider N real scalars $\phi_i, \quad i = 1, \ldots, N$

$$
\mathcal{L} \supset \frac{1}{2} \partial_{\mu} \phi_i \partial^{\mu} \phi_i - \frac{m_{ij}^2}{2} \phi_i \phi_j - \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l
$$

 \blacktriangleright Let the mass term be randomly-determined

$$
m^2 = \left(\begin{array}{cccc} m_{11}^2 & m_{12}^2 & \cdots & m_{1N}^2 \\ m_{21}^2 & m_{22}^2 & \cdots & m_{2N}^2 \\ \vdots & \vdots & \ddots & \vdots \\ m_{N1}^2 & m_{N2}^2 & & m_{NN}^2 \end{array}\right)
$$

Example 1: $m_{ij}^2 = 0$ for $i \neq j$.

$$
m^{2} = \left(\begin{array}{cccc} m_{1}^{2} & 0 & \cdots & 0 \\ 0 & m_{2}^{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & m_{N}^{2} \end{array}\right)
$$

Matthew Low (IAS) [Disorder at the LHC](#page-0-0) June 7, 2018 5

$$
\blacktriangleright \; Example \; 1: \; m_{ij}^2 = 0 \; \text{for} \; i \neq j.
$$

$$
m^2 = \left(\begin{array}{cccc} m_1^2 & 0 & \cdots & 0 \\ 0 & m_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & m_N^2 \end{array}\right)
$$

Spectrum can be shifted by non-zero mean μ \blacktriangleright

(Craig and Sutherland, [1710.01354\)](http://arxiv.org/abs/1710.01354)

- \blacktriangleright *Example 2:* Anderson localization
	- \triangleright Nearest neighbor structure to mass matrix
	- \blacktriangleright Randomness in diagonal terms, ϵ_i

$$
m^{2} = \left(\begin{array}{ccccc} \epsilon_{0} + t & -t & 0 & \cdots & 0 \\ -t & \epsilon_{1} + 2t & -t & \cdots & 0 \\ 0 & -t & \epsilon_{2} + 2t & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & -t & \epsilon_{N} + t \end{array}\right)
$$

 \blacktriangleright Mass spectrum

Example 3: Fully-populated m_{ij}^2 drawn from $Gaus(\mu = 0, \sigma)$ \blacktriangleright

$$
m^{2} = \begin{pmatrix} 29.9 & 19.2 & 3.5 & -1.3 \\ 19.2 & 27.6 & -31.5 & -14.7 \\ 3.5 & -31.5 & 19.1 & 14.4 \\ -1.3 & -14.7 & 14.4 & -9.6 \end{pmatrix}
$$

$$
\lambda = 65.6, 31.2, -15.8, -13.9
$$

In large N limit, distribution goes to Wigner semicircle ▶

- \blacktriangleright Wigner semicircle distribution
	- ▶ Distributions has endpoints at $\pm\sqrt{}$ $2N\sigma$
	- \triangleright Non-zero μ does not shift spectrum

$$
\lambda_N \sim N\mu
$$

$$
\lambda_i \in (-\sqrt{2N}\sigma, \sqrt{2N}\sigma) \qquad i = 1, ..., N-1
$$

- \blacktriangleright Wigner semicircle distribution
	- ▶ Distributions has endpoints at $\pm\sqrt{}$ $2N\sigma$
	- \triangleright Non-zero μ does not shift spectrum

 $\lambda_N \sim N \mu$ $\lambda_i \in (\sqrt{2N}\sigma, \sqrt{2N}\sigma$ $i = 1, \ldots, N-1$

If Consider $\mu \gg \sigma$, matrix is approximately constant

 $\lambda_N \approx N \mu$ $\lambda_i \approx 0$ $i = 1, \ldots, N - 1$ trace = $\sum \lambda_i = N\mu$

- \triangleright Wigner semicircle distribution
	- ▶ Distributions has endpoints at $\pm\sqrt{}$ $2N\sigma$
	- \triangleright Non-zero μ does not shift spectrum

 $\lambda_N \sim N \mu$ $\lambda_i \in (\sqrt{2N}\sigma, \sqrt{2N}\sigma$ $i = 1, \ldots, N-1$

If Consider $\mu \gg \sigma$, matrix is approximately constant

 $\lambda_N \approx N \mu$ trace = $\sum \lambda_i = N\mu$

$$
\lambda_i \approx 0 \qquad i = 1, \dots, N-1
$$

- \triangleright Wigner distribution still holds for general μ and σ
	- A model with σ and μ independent could yield light states

Matthew Low (IAS) [Disorder at the LHC](#page-0-0) June 7, 2018 9

▶ Possible portals (assuming no light mediators)

$$
\phi |H|^2 \qquad \phi^2 |H|^2 \qquad LH\psi
$$

 \blacktriangleright We use the following model

$$
\mathcal{L} \supset -\frac{1}{2}m_{ij}^2 \phi_i \phi_j - \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l - \lambda_{Hij} |H|^2 \phi_i \phi_j
$$

 \triangleright For simplicity, for all scalars, take

$$
\lambda_{ijkl} = \frac{1}{N} \qquad \lambda_{Hij} = \frac{1}{N}
$$

- \triangleright For simplicity, take masses uniformly distributed
- In Lightest scalar, ϕ_1 , is stable

 \blacktriangleright We use the following model

$$
\mathcal{L} \supset -\frac{1}{2} m_{ij}^2 \phi_i \phi_j - \lambda_{ijkl} \phi_i \phi_j \phi_k \phi_l - \lambda_{Hij} |H|^2 \phi_i \phi_j
$$

 \blacktriangleright Production from gluon fusion

▶ Decays within scalar sector and via offshell Higgs

When heavy scalars are produced, they cascade down through the scalar \blacktriangleright sector

- Maximum height of tree $\sim \log N$ Þ
- Maximum final state particles $\sim N$ ь
- In practice, spectrum-dependent \blacktriangleright

Number of particles in ϕ_N decay (spectrum A) \blacktriangleright

Disorder at the LHC

Number of particles in ϕ_N decay (spectrum B) \blacktriangleright

Matthew Low (IAS) Disorder at the LHC

Outlook

- \triangleright New sectors are plausible new physics scenarios
- Have a large N number of new particles does not mean it is necessarily ▶ easy to observe
- Can disorder answer any other interesting questions in model building? \blacktriangleright

