NA60+
Status and plans

Gianluca Usai
INFN and University of Cagliari

Physics Beyond Colliders - QCD working group meeting
14/06/2018
The high energy frontier: present status

- QCD phase diagram mostly investigated around $\mu_B=0$:
 - Cross-over transition at $T_c=155$ MeV
 - Produced matter: strongly interacting QGP \rightarrow nearly ideal fluid
Largely unexplored:
- Existence of critical point and first order phase transition put forward

First order phase transition:
- Measurement would provide first direct evidence (in thermodynamic sense) of a phase transition to the QGP

Additional chiral phase transition:
- Exploration of changes in the hadron spectrum
The low energy frontier: the QCD phase diagram at high baryon potential μ_B

- Largely unexplored:
 - Existence of critical point and first order phase transition put forward

- First order phase transition:
 - Measurement would provide first direct evidence (in thermodynamic sense) of a phase transition to the QGP

- Additional chiral phase transition:
 - Exploration of changes in the hadron spectrum

Low energy experiments at different facilities:
- RHIC, SPS, NICA, FAIR, (JPARC?)
Investigating the QCD phase diagram at high μ_B: dilepton measurements

- First order phase transition:
 - Caloric curve T vs energy density

- Chiral symmetry restoration:
 - ρ/a_1 chiral mixing ➔ first measurement of spectral properties of a_1 at chiral restoration

- J/ψ and open charm at low energies
Investigating the QCD phase diagram at high μ_B: dilepton measurements

- First order phase transition:
 - Caloric curve T vs energy density (more comprehensive performance plot)

- Chiral symmetry restoration:
 - ρ/a_1 chiral mixing \rightarrow first measurement of spectral properties of a_1 at chiral restoration

- J/ψ and open charm at low energies (first studies on charm)
First order phase transitions and caloric curves

- Caloric curve and phase diagram of water

NA60+: principle of the measurement of T vs energy density

- **T**: fit of dilepton mass spectrum in 1.5<M<2.5 GeV after charm and Drell-Yan subtraction
 \[\frac{dN}{dM} \approx M^{3/2} \exp\left(-\frac{M}{T}\right) \]

- **T_{slope}** tracks the initial temperature of the medium

- Measurement performed at several collision energies (beam energy scan)

Acceptance corrected spectra:
- \(\sqrt{s}=17.3 \text{ GeV (x100)} \) \(E_{\text{lab}}=160 \text{ GeV} \)
- \(\sqrt{s}=8.8 \text{ GeV (x10)} \) \(E_{\text{lab}}=40 \text{ GeV} \)
- \(\sqrt{s}=6.3 \text{ GeV (x1)} \) \(E_{\text{lab}}=20 \text{ GeV} \)

Dashed lines: theoretical estimate (PLB 753 (2016) 586)
Black lines 1-1.5 GeV: Fit with \(\frac{dN}{dM} \approx M^{3/2} \exp\left(-\frac{M}{T}\right) \)
NA60+: expected performance for caloric curve

Indication of flattening around $v \approx 5-10$ GeV \Rightarrow unique energy interval covered by SPS
QCD chiral symmetry restoration

\[\langle \bar{q}q(T) \rangle / \langle \bar{q}q \rangle_0 \]

Vacuum

Chiral Restoration

\[\rho_V \]

\[\rho_A \]

\[\int \frac{ds}{\pi} (\rho_V - \rho_A) = -m_q \langle \bar{q}q \rangle \]

Dropping Masses?

Melting Resonances?

[Fodor et al.'10]
Ultimate test of chiral restoration:

- show that the vector (ρ) and axial-vector (a_1) spectral functions should become (almost) degenerate

a_1 never measured in nuclear collisions. How to measure it?
Ultimate test of chiral restoration:
- show that the vector (ρ) and axial-vector (a_1) spectral functions should become (almost) degenerate

a_1 never measured in nuclear collisions. How to measure it?

Principle of the measurement

a_1 not coupled to dileptons in vacuum

But in nuclear medium:

$\pi a_1 \rightarrow \mu\mu$ in $1.5 < M < 1.5$ GeV via chiral mixing

\Rightarrow direct evidence of chiral symmetry restoration
NA60+: performance for $\rho-a_1$ chiral mixing

- Sensitivity to mass spectrum region $1 < M < 1.5$ GeV close to onset of deconfinement:
 - very small QGP, large πa_1 yield

![Plot of NA60+ Central PbPb for $\rho-a_1$ mixing](chart.png)

- Solid line: theory estimate
 - PLB 753 (2016) 586
Charmonium at low energies

- Full SPS energy (160 GeV): J/ψ anomalous suppression relevant for PbPb collisions
- Energy scan: investigation of onset of J/ψ suppression → relation to onset of deconfinement
- Other possible measurements: $\psi(2S), \chi_c$
NA60+: charmonium at low energies

- Full SPS energy (160 GeV): J/ψ anomalous suppression relevant for PbPb collisions
- Energy scan: investigation of onset of J/ψ suppression \Rightarrow relation to onset of deconfinement
- Other possible measurements: $\psi(2S), \chi_c$

- J/ψ production feasible from top SPS energy down to \sim40-50 GeV
 - Large acceptance: \sim20%
 - Total sample of $\sim2-3 \cdot 10^4$ J/ψ
NA60+: charmonium and open charm at low energies

- At onset of deconfinement:
 - Change of $D\bar{D}$ production rate?
 - Onset of J/ψ suppression

- Unique simultaneous measurement of $J/\psi + D\bar{D}$ vs energy:
NA60+: first performance studies for open charm

- Measurement of open-charm: Hadronic decays ($D \rightarrow K\pi$ and $D \rightarrow K\pi\pi$)
- standalone track reconstruction in the silicon vertex tracker

- First studies at 160 GeV:
 - Very high rec eff ≈70-80%
- Next step: simulation of signal embedded in full event
Experimental conditions for dilepton measurements at the CERN SPS

Beams:
- Energy scan in the interval $\sqrt{s} \approx 5$-17 GeV ($E_{\text{lab}} \approx 11$-160 GeV) with Pb beams
- Beam intensity $\sim 10^7/s$ or more \Rightarrow Interaction rate $\sim O($MHz$)$
- Dedicated run at each energy in a few weeks beam-time period
- p-Pb needed at least for some energy for reference measurements (Drell-Yan)

Statistics goals:
- $5 \cdot 10^7$ reconstructed pairs from thermal radiation per energy point (statistics increase by a factor ≈ 100 over NA60 at each energy)
- $2-3 \cdot 10^4$ reconstructed J/ψ mesons per energy point (and larger for open charm)
Why large interaction rates to study dileptons

Interaction Rates I_R (Luminosity × σ_{int})
- Fixed target (SPS, SIS100): 10^6-10^7/s
- Colliders (LHC upgrade): 5×10^4/s

Dilepton production: rare processes

lowest order rate $\sim \alpha_{em}^2$

Signal/Background ratio S/B (B - combinatorial background)
- range of B/S for different experiments: 20 or more \Rightarrow $B/S >> 1$

Effective signal size: $S_{eff} \sim I_R \times S/B$ reduction by factors of 20-1000!
\[B(z) = \frac{B_0}{R} \]

\[\sqrt{s} = 6.3 \text{ GeV} \quad (E_{\text{lab}} = 20 \text{ GeV}) \] setup

Apparatus layout

- **Hadron absorber**
- **Graphite**
- **BeO**

Trigger: 2 stations of RPCs, ...

Muon Tracking: 4 stations of GEMs

Vertex spectrometer: 2-3 T dipole field stations of MAPS

Toroid magnet

- 300 cm
- 120 cm
- 240 cm

\[\approx 4.5 \text{ m} \]
Apparatus layout

Based on established detector technologies

μs=6.3 GeV ($E_{\text{lab}}=20$ GeV) setup

$B(z) = \frac{B_0}{R}$

μon Tracking:
4 stations of GEMs

Vertex spectrometer:
2-3 T dipole field
stations of MAPS

Hadron absorber
Graphite
BeO

Toroid magnet

Trigger:
2 stations of RPCs, ...

≈4.5 m

300 cm
240 cm
120 cm

200 cm
Installation

The only available installation site is ECN3:
- Coexistence of NA62 (or KLever) with another experiment is excluded
- A second beamline for heavy ions can be implemented without NA62/KLever and NA60+/Dirac+ coexistence is possible
Cost, timeline, collaboration

- The estimated cost is in the range of 15-25 MEuros, depending in particular on the cost of the magnet for the muon tracking.
- Data taking: might start from 2025 onward.
- Medium-size collaboration of 50-100 researchers.
- Informal interest from groups from several institutions:
 - Cagliari (INFN), Padova (INFN), Torino (INFN), Munich (TUM), Stony Brook University, Rice University, Lyon (IPNL), Kolkata (Saha institute).
- Structured document (LOI or similar) to be prepared in next months.
backup
Dilepton experiments – present and future

<table>
<thead>
<tr>
<th>The high energy frontier</th>
<th>The low energy frontier</th>
<th>Relevance</th>
</tr>
</thead>
<tbody>
<tr>
<td>- RHIC PHENIX, STAR</td>
<td>- RHIC LE STAR</td>
<td>M <1 GeV \rightarrow chiral restoration</td>
</tr>
<tr>
<td>- LHC ALICE</td>
<td>- SPS NA60+</td>
<td>M >1 GeV \rightarrow chiral restoration, hadrons vs. partons (precise meas. of T)</td>
</tr>
<tr>
<td>- SIS100 HADES, CBM</td>
<td>- NICA MPD</td>
<td>Dream: energy dependence from $\sqrt{s} = 4 – 5500$ AGeV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>with data quality equivalent or better than NA60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Principal obstacle to reach this:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>colliders not competitive to fixed-target experiments in terms of interaction rate</td>
</tr>
</tbody>
</table>
The STAR BES at RHIC for comparison

- **BES II goal**: statistics ranging from 400×10^6 mbias events ($\sqrt{s} = 19.6$ GeV) to 100×10^6 mbias events ($\sqrt{s} = 7.7$ GeV)

- **STAR fixed target**: energy range to be extended further down to $\sqrt{s} = 3$ GeV

 Statistics goal: 10^8 mbias events/energy (same sensitivity as BES-II)

<table>
<thead>
<tr>
<th>Collision Energy (GeV)</th>
<th>BES-II Proposed Events Goal (M)</th>
<th>BES-I Events (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.7</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>9.1</td>
<td>160</td>
<td>N/A</td>
</tr>
<tr>
<td>11.5</td>
<td>230</td>
<td>12</td>
</tr>
<tr>
<td>14.5</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>19.6</td>
<td>400</td>
<td>36</td>
</tr>
</tbody>
</table>

In 2003 NA60 at $\sqrt{s}=17.3$ GeV collected $>200 \times 10^6$ triggered muon pairs. This means that BESII will not be able to reach even the precision of the former NA60 in dilepton measurements.
Dilepton production in high-energy nuclear collisions

time evolution of a nuclear collision

A+A \quad NN-coll. \quad QGP \quad Hadron Gas \quad Freeze-Out

“Hubble” expansion: \(T = 240 \rightarrow \approx 160 \) \quad 160 \rightarrow 110

\sim 110 \text{ (MeV)}

Lepton pairs emitted at all stages; no final state interactions

NN-collisions: (Drell-Yan), J/\psi, D\bar{D} pairs

QGP: thermal \(q\bar{q} \) annihilation

Hot+Dense Hadron Gas: \(\rho, \sigma_1\pi \rightarrow \ell^+\ell^- \)

Freeze-out: free hadron decays

Thermal dileptons
Thermal dilepton rate and the measurement of T

$$\frac{dN_{ee}}{d^4xd^4q} = \frac{-\alpha^2_{em}}{\pi^3 M^2} f^B(q_0, T) \times \text{Im} \Pi_{em}(M, q; \mu_B, T)$$

Flat spectral function for $M>1.5$ GeV \Rightarrow mass spectrum after integration over momenta and emission 4-volume:

$$dN_{\mu\mu}/dM \propto M^{3/2} \times \langle \exp(-M/T) \rangle$$

T: average temperature which tracks initial temperature (dominant contribution from early stages)

Robust theoretical result

Fit of mass spectrum for $M>1.5$ GeV \Rightarrow thermometer!
NA60 measurement of T at $\sqrt{s}=17.3$ GeV ($E_{\text{lab}}=160$ GeV): evidence of deconfinement

All physics background sources subtr. and integrated over p_T

Correction for acceptance and normalization to $dN_{\text{ch}}/d\eta$

effective statistics highest of all experiments, past and present (by a factor of nearly 1000)

$M<1$ GeV

ρ dominates, ‘melts’ close to T_c

$M>1$ GeV

\sim exponential fall-off \rightarrow ‘Planck-like’

fit to $dN/dM \propto M^{3/2} \times \exp(-M/T)$

range $1.1-2.0$ GeV: $T=205\pm12$ MeV

$1.1-2.4$ GeV: $T=230\pm10$ MeV

$T>T_c=160-170$ MeV: partons dominate
Chiral symmetry breaking and the hadron spectrum

Chiral symmetry breaking: masses of the 6 quark flavours

QCD mass (u,d) dominant in the visible part of the Universe

Vector-Axial vector splitting (also pseudoscalar-scalar) in the physical vacuum due to spontaneous breaking of chiral symmetry
Chiral symmetry restoration and the hadron spectrum

at T_c: Chiral Restoration

Borsanyi et al., arXiv:1011.4030.v1 (2010)

![Graph showing Chiral symmetry restoration](image1)

- **Lattice QCD, μ_B=0**

Vector and axial vector spectral functions expected to change (left: two possible qualitative scenarios)

Chiral mixing in the vector/axial vector spectral functions (at correlator level)

![Graph showing Chiral mixing](image2)

What visible effects on the dilepton spectrum?

In vacuum (left) the region M=1-1.5 GeV is **significantly depleted**.

Chiral mixing: M=1-1.5 GeV is filled by \(\pi a_1 \to \mu \mu \) (trace of bumpy structure from \(a_1 \)?)

➤ **direct evidence of chiral symmetry restoration**
The NA60+ proposal at the CERN SPS

- **NA60+ layout** close to NA60:
 - precision muon measurement with tracking before and after hadron absorber
 - possibility of adapting the set-up to cover the same kinematic region for various beam energies

- NA60 experiment was housed in the **ECN3 underground zone**
 - dismantled in 2010 to make space for NA62 installation

Diagram:
- Beam tracker
- Dipole magnet
- Si-pixel tracker
- Targets
- Hadron absorber
- Muon trigger and tracking
- Magnetic field

Dimensions:
- $<1\text{m}$
- $\approx 10\text{m}$
Scalable spectrometer for a beam energy scan $\sqrt{s}=6-17$ GeV ($E_{\text{lab}}=20-160$ GeV)

High energy setup ($\sqrt{s}=17$ GeV, $E_{\text{lab}}=160$ GeV)

Low energy setup ($\sqrt{s}=6-8$ GeV, $E_{\text{lab}}=20-40$ GeV)

Scaling in terms of:
- absorber thickness
- longitudinal positions of detectors
NA60+ performance for thermal radiation in central Pb+Pb: data sample size and quality ($\sqrt{s}=8.8$ GeV; $E_{\text{lab}}=40$ GeV)

- $2 \cdot 10^7$ reconstructed signal pairs - factor 100 over NA60
- Combinatorial background: μ from π,K or hadron puch-through - B/S similar as in NA60
- Fake matches: signal μ matched to wrong track in pixel telescope - much better than NA60
- Mass resolution 10-15 MeV - factor ≈ 2 better than NA60
NA60+ performance for central Pb+Pb in beam energy scan: data samples at \(\sqrt{s}=6.3-8.8-17.3\) GeV \((E_{lab}=20,40,160\) GeV\)

2 \(\cdot\) 10^7 reconstructed signal pairs at each energy

From full SPS energy towards low energy:
- Significant reduction of Drell-Yan
- Open charm becomes negligible
- Decrease of QGP
Signal mass spectrum: example for central Pb+Pb at √s=8.8 GeV

- Signal spectrum measurable up to 2.5-3 GeV:
 - Subtractions of comb. Bkg (0.5% precision)
 - Subtraction of fake matches

- Dilepton sources M<1 GeV:
 - Thermal radiation ρ+ω
 - Thermal radiation QGP
 - Freeze-out hadron cocktail (η, ω, φ) (M<1 GeV)

- Dilepton sources M>1 GeV:
 - Thermal radiation 4π
 - Thermal radiation QGP
 - Drell-Yan
 - Open charm
Compact setup: performance for central Pb+Pb at $\sqrt{s}=8.8$ GeV

ω ϕ

$S \approx 2 \cdot 10^7$
$\langle S/B \rangle \approx 1/12$
$dN_{ch}/d\eta = 270$

Pb-Pb $\sqrt{s}=8.8$ GeV NA60+
0-5% central collisions

dN/dM per 20 MeV

dN/dM per 50 MeV

opposite sign pairs
combinatorial background
fake matches ----
signal pairs

hadron cocktail
thermal radiation
Drell-Yan
In-med Ar
QGP

Pb-Pb $\sqrt{s}=8.8$ GeV NA60+
0-5% central collisions

Compact setup: performance for central Pb+Pb at $\sqrt{s}=8.8$ GeV
Comparison of performance of different setups at $\sqrt{s}=8.8$ GeV

Very similar performance – T measurement practically identical

Large setup (max $R\approx 9$ m)

Compact setup (max $R\approx 7$ m)
The silicon telescope: a new generation tracker for ultra-precise measurements

- Main idea: based on monolithic active pixel sensors (MAPS)

Present state of the art: the ALICE ALPIDE sensor for the ITS upgrade

- 7 layers
- 12.5 Gigapixels
- binary readout
- ~ 10 m² active surface
The Alpide pixel sensor

CMOS Pixel Sensor - TowerJazz 0.18μm CMOS Imaging Process

- High-resistivity (> 1kΩ cm) p-type epitaxial layer (25μm) on p-type substrate
- Small n-well diode (2 μm diameter), ~100 times smaller than pixel => low capacitance (~fF)
- Reverse bias voltage (-6V < V_{BB} < 0V) to substrate (contact from the top) to increase depletion zone around NWELL collection diode
- Deep PWELL shields NWELL of PMOS transistors (full CMOS circuitry within active area)
The Alpide pixel sensor: performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Inner Barrel</th>
<th>Outer Barrel</th>
<th>ALPIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicon thickness</td>
<td>50μm</td>
<td>100μm</td>
<td>✓</td>
</tr>
<tr>
<td>Spatial resolution</td>
<td>5μm</td>
<td>10μm</td>
<td>~ 5μm</td>
</tr>
<tr>
<td>Chip dimension</td>
<td>15mm x 30mm</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Power density</td>
<td>< 300mW/cm²</td>
<td>< 100mW/cm²</td>
<td>< 40mW/cm²</td>
</tr>
<tr>
<td>Event-time resolution</td>
<td>< 30μs</td>
<td></td>
<td>~ 2μs</td>
</tr>
<tr>
<td>Detection efficiency</td>
<td>> 99%</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Fake-hit rate *</td>
<td></td>
<td>< 10⁻⁶/event/pixel</td>
<td><<< 10⁻⁶/event/pixel</td>
</tr>
<tr>
<td>NIEL radiation tolerance **</td>
<td>1.7x10¹³ 1MeV nₑₑq/cm²</td>
<td>10¹² 1MeV nₑₑq/cm²</td>
<td>✓</td>
</tr>
<tr>
<td>TID radiation tolerance **</td>
<td>2.7Mrad</td>
<td>100krad</td>
<td>tested at 350krad</td>
</tr>
</tbody>
</table>

* revised numbers w.r.t. TDR
** including a safety factor of 10, revised numbers w.r.t. TDR
Monolithic pixels and fixed target operation

- **Advantages:**
 - significantly reduced cost
 - exceedingly small material budget (0.1-0.3% X_0)
 - highly granular - excellent spatial resolution (5 μm)
 - improved background rejection for thermal radiation
 - precision measurement of charm

- **Improvements for operation with fixed-target experiment:**
 - increase of factor ≈ 5 in readout speed
 - might be possible from trade-off with power consumption
 - Increase of radiation hardness
 - feature of the TowerJazz CMOS process would allow the NIEL to be increased up to 10^{15} n_{eq}/cm^2!
Development of new very large area MAPS sensors

Stitching : possibility to fabricate wafer-size chips ➔ allows very large sensors to be produced

Example of pixel plane with just 4 ≈15x15 cm² sensors with total material budget of 0.1% X_0!

Submission of a request for funds in Italy for the development of a new generation of very large area MAPS
The silicon telescope with very large area MAPS

- Possibility to construct tracking planes from such a sensor excluding all services and mechanical support structures from the acceptance
- Material budget for tracking stations of about 0.1% X_0!
From full SPS energy towards low energy:

- Significant reduction of Drell-Yan
- Open charm becomes negligible
- Decrease of QGP
QCD chiral symmetry breaking in vacuum

Vacuum

- $V[\tau \to 2n\pi \nu_\tau]$
- $A[\tau \to (2n+1)\pi \nu_\tau]$
- $\rho(770) + \text{cont.}$
- $a_1(1260) + \text{cont.}$

ρ_V

ρ_A

$M \text{ [GeV/c}^2\text{]}$

$N(1535)$

σ

(400–1200)

ρ

(770)

π

(140)

$J^P=0^\pm$

1^\pm

$1/2^\pm$
Chiral symmetry restoration: vector spectral function

- High precision measurement by NA60 in In-In collisions at 160 AGeV
- Enormous broadening of ρ: > 400 MeV

On chiral restoration and ρ melting:

P.M.Hohler and R. Rapp, PLB 731 (2014)

103
High precision measurement by NA60 in In-In collisions at 160 AGeV

Enormous broadening of ρ: > 400 MeV

Resonance melting \Rightarrow hadronic rate approaches QGP rate

Suggestive for deconfinement and chiral restoration

Robust modeling in heavy-ion collisions

On chiral restoration and ρ melting:

P.M.Hohler and R. Rapp, PLB 731 (2014) 103