Theory Overview

Clare Burrage
University of Nottingham
Clare.Burrage@nottingham.ac.uk

Outline:

Overview of PBC BSM physics
Benchmark portal models
Lepton flavour violation

Evidence for BSM Physics

Strong experimental evidence

Neutrino Oscillations
Abundance of matter, lack of anti-matter
Galactic Dynamics
CMB

Fine tuning /naturalness

No evidence of strong CP violation

Higgs mass fine tuning

Benchmark models - Portals

Portals

$$\mathcal{L}_{\mathrm{portal}} = \sum O_{\mathrm{SM}} \times O_{\mathrm{DS}}$$

Operator of standard model fields

Operator of dark sector fields

In the absence of a symmetry assume that lowest order operators will be most important

Vector Portals

$$\mathcal{L}_{\text{vector}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B_{\mu\nu}$$

Kinetic mixing parameter

Field strength of new U(1) gauge field

Hypercharge field strength

$$\mathcal{L}_{DS} = -\frac{1}{4} (F'_{\mu\nu})^2 + \frac{1}{2} m_{A'}^2 (A'_{\mu})^2 + |(\partial_{\mu} + ig_D A'_{\mu})\chi|^2 + \dots$$

Dark photon mass

Possible new matter field

Vector Portal Benchmark Models

BC1. Minimal Dark Photon Model

Only one new field.

Dark Matter assumed to be elsewhere

Dark Photons decay back to SM states

Parameters: $m_{A'}$, ϵ

BC2. Light Dark Matter Coupled to Dark Photon

Minimally coupled WIMP dark matter

Preferred values of dark coupling $\alpha_D = g_D^2/(4\pi)$ s.t. decay of dark photon is primarily into dark fermion states

Parameters: $m_{A'}$, ϵ , m_{χ} , α_{D}

Vector Portal Benchmark Models

- BC3. Millicharged Particles
 - Zero dark photon mass

Dark fermions get a small effective U(1) charge;

$$|Q_{\chi}| = |\epsilon g_D e|$$

Parameters: m_{χ} , Q_{χ}/ϵ ,

Scalar Portals

Only allowed 3 and 4 dimension operators interact with the Higgs

$$\mathcal{L}_{\text{scalar}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - (\mu S + \lambda S^2) H^{\dagger} H$$

Higgs portal couplings

Dark sector may include dark (matter) fermion

$$\mathcal{L}_{\mathrm{DS}} = S\bar{\chi}\chi + \dots$$

After EW symmetry breaking, mixing of scalar with the Higgs. When this is small

$$\theta = \frac{\mu v}{m_h^2 - m_S^2}$$

Scalar Portal Benchmark Models

BC4. Higgs Mixed Scalar

No dimension four interaction

Parameters: θ , m_s

BC5. Higgs Mixed Scalar – Large Pair-Production
 Dimension four interaction dominates scalar production

If, eg $\lambda \sim 5 \times 10^{-4}$, model avoids LHC direct searches

Parameters: λ , θ , m_s

Neutrino Portals aka Heavy Neutral Leptons

$$\mathcal{L}_{\text{vector}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} + \sum F_{\alpha I}(\bar{L}_{\alpha}H)N_{I}$$

SM Lepton doublets

Heavy neutral lepton(s)

Dark sector Lagrangian can include both Dirac and Majorara mass terms for the HNLs

After EW symmetry breaking find mixing between neutrinos determined by matrix U

Assume U controls both production and decay

Neutrino Portal Benchmark Models

- **BC6.** $U_e^2 : U_{\mu}^2 : U_{\tau}^2 = 52 : 1 : 1$ Inverted hierarchy Parameters: m_N , $|U_e|^2$
- **BC7.** $U_e^2 : U_{\mu}^2 : U_{\tau}^2 = 1 : 16 : 3.8$ Normal hierarchy Parameters: m_N , $|U_{\mu}|^2$
- **BC8.** $U_e^2 : U_{\mu}^2 : U_{\tau}^2 = 0.061 : 1 : 4.3$ Normal hierarchy Parameters: m_N , $|U_{\tau}|^2$

Axion Portals – Pseudoscalar portals

Includes QCD axions, and axion-like particles

$$\mathcal{L}_{\rm axion} = \mathcal{L}_{\rm SM} + \mathcal{L}_{\rm DS} + \frac{a}{4f_{\gamma}} F_{\mu\nu} \tilde{F}_{\mu\nu} + \frac{a}{4f_{G}} {\rm Tr} G_{\mu\nu} \tilde{G}_{\mu\nu} + \frac{\partial_{\mu} a}{f_{l}} \sum_{\alpha} \bar{l}_{\alpha} \gamma_{\mu} \gamma_{5} l_{\alpha} + \frac{\partial_{\mu} a}{f_{q}} \sum_{\beta} \bar{q}_{\beta} \gamma_{\mu} \gamma_{5} q_{\beta}$$
Photon coupling

Gluon coupling

Lepton coupling

Quark coupling

Dark sector Lagrangian may contain new states required for UV completion

Axion Portal Benchmark Models

BC9. Photon Dominance

Dominant coupling to photons

Parameters: m_a , $g_{a\gamma\gamma} = f_{\gamma}^{-1}$

BC10. Fermion dominance

Dominant coupling to fermions

For simplicity assume $f_q = f_l$

Parameters: m_a , f_l^{-1} , f_q^{-1}

BC11. Gluon dominance

Dominant coupling to gluons

Requires fine tuning of axion mass

Parameters: m_a, f_G⁻¹

Lepton Flavour Universality

Hints (~3σ) of violation of Lepton Flavour Universality in semi-leptonic b decays

$$B \rightarrow K I^+ I^-$$

$$B \rightarrow D I v$$

Still some debate about size of QCD uncertainties

Challenges for theorists:

Anomalies only in semi-leptonic decays

No anomalies in; semileptonic K and π decays, purely leptonic τ decays, electroweak precision observables

BSM - Lepton Flavour Violation

Possible solutions introduce new four fermion operators e.g.

Alternative approach using EFT (but still have to make assumptions about gauge structure)

15

LFV and K decays

In most explanations:

NA62: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

KLEVER: $K_L \rightarrow \pi^0 \nu \overline{\nu}$

Can be sensitive to the new physics, although in a model dependent way

K_L decay is CP violating, K⁺ is not, and so two channels give complementary information

Summary

Compelling evidence for BSM physics

A wide range of possibilities for what this could be (and large parameter spaces)

11 benchmark models for low energy experiments: vector, scalar, neutrino and axion portals

Possibility to test LFV with rare K decays