

Magnetic measurements on MBH dipoles (models and prototype)

Lucio Fiscarelli TE/MSC/MM

Outline

- Background information
 - Coils, magnets and strands
 - Strategy
 - Instrumentation
- Measurement results
 - Ambient temperature
 - TF and field quality (geometric)
 - Cryogenic temperature
 - TF and saturation, b3 and persistent currents
 - Field quality (saturation, persistent currents)
 - Other effects
- Summary

Background information

Coils, magnets, and conductors

Coil	Magnet	Strand
105	SM101	RRP 108/127
106	SP101, SP102, DP101	RRP 108/127
107	SP101	RRP 108/127
108	SP102, DP101	RRP 132/169
109	SP103, DP101, DP102	RRP 132/169
111	SP103, DP101	RRP 132/169
112	SP104, DP102	RRP 132/169
113	SP104	RRP 132/169
114	SP105, DP102	RRP 150/169
115	SP105, DP102	RRP 150/169
116	SP106	RRP 150/169
117	SP106	RRP 150/169
Coil	Magnet	Strand
CR4	PROTO1- AP1	RRP 132/169 & 150/169
CR5	PROTO1- AP1	RRP 132/169 & 150/169
CR6	PROTO1- AP2	RRP 108/127
CR7	PROTO1- AP2	RRP 108/127

Measurement strategy

- Measurement with rotating coils (cross calibrated with stretched wire)
- Ambient temperature
 - Central and integral field at ±20 A
 - After collaring (CC)
 - After shell welding (CM)
- Cryogenic temperature
 - Central and integral field up to nominal
 - Standard program
 - At 1.9 K
 - Machine simulation cycle after pre-cycling at 50 As⁻¹
 - Stair-step cycle
 - Ramp-rate study
 - Extended program (option)
 - At 4.3 K
 - Machine simulation cycle (limited flattop current)

Shafts for models at ambient temperature

Shaft design 1

- 3 sectors, L = 130 mm/each
- o 5 tangential coils/sector
- Measurement radius 22 mm
- o Horizontal position

Shaft design 2, the same but \circ 1 sector, L=1200 mm

Measurement system at ambient temperature

- Motor + encoder + slip-ring unit (MRU)
- Fast Digital Integrator (FDI)
- FuG low voltage power supply (40 V, 20 A)

- DCCT Hitec MACC-plus
- Search coil shafts

A measurement is an average over 1200 mm (or 130 mm fro the scanning)

Measurements in 3 positions:

Z-scan with short shaft

Shaft centered Two adjacent positions

- -> central field
- -> integral field

Shaft for models at cryogenic temperature

Design

- 7 sectors, total length 2.1 m
- Dipole compensation scheme (3 tangential coils/sector)
- L = 434 mm to cover the coil heads, end field and splice region
- L = 249 mm in the straight part
- Measurement radius of 22 mm
- Full rotation symmetry for high rotation speed
- Possible use for quench location

Selection of results

Ambient temperature: TF of short models

Ambient temperature: TF of full-length prototype

TF central	C	ollared co	oil	Cold mass		
	MM	ROXIE	DIFF	MM	ROXIE	DIFF
	T/kA		units	T/kA		units
HCMBH_CR1	0.7945		-2			
HCMBH_CR2	0.7939	0.7947	-10			
HCMBH_CR3	0.7938		-11			
HCLMBHB_CR1 - Ap1 (CR2)				0.9896	0.9922	-26
HCLMBHB_CR1 - Ap2 (CR3)				0.9896		-26

TF integral	C	ollared co	bil	Cold mass		
	MM	ROXIE	DIFF	MM	ROXIE	DIFF
	Tm/kA		units	Tm/kA		units
HCMBH_CR1	4.2213		-14			
HCMBH_CR2	4.2209	4.2272	-15			
HCMBH_CR3	4.2255		-4			
HCLMBHB_CR1 - Ap1 (CR2)				5.2352	5.2391	-7
HCLMBHB_CR1 - Ap2 (CR3)				5.2342		-9

Ambient temperature: multipoles on short models

FIELD QUALITY on short models:

Affected by insulation thickness (different among models)

Ambient temperature: multipoles on prototype

Ambient temperature: random components on prototype

ROXIE:

Calculations of random block displacements with $\sigma = 60 \ \mu m$

Random components seems to be larger than NbTi technology, but not enough statistic

Cryogenic temperature 1.9 K: TF and saturation

Central TF in agreement with model in terms of

- Geometric
- Saturation

Mismatch calculations/mm for saturation on single aperture models seems to be related to 3D effects

Cryogenic temperature 1.9 K: b2, b4 and saturation

Saturation affects mainly b2 and b4 (apart TF): Predicted by calculations at unit level

Cryogenic temperature 1.9 K: b3 and persistent currents

PERSISTENT CURRENTS effects:

More than 20 units of change from injection to nominal Difficult to compute, flux jumps difficult to model

Cryogenic temperature 1.9 K: Ramp-rate effects

	MBHDP101 Ap 1 (Coils 106/108) at 5 kA ramping up									
A s ⁻¹	10	20	40	80			_			
T kA ⁻¹	TF									
	0.9945	0.9946	0.9948	0.9949						
A s ⁻¹	10	20	40	80		10	20	40	80	
units	bn						a	n		
2	-1.7	-1.7	-1.6	-1.4		2.9	2.7	2.5	2.0	
3	6.2	6.3	6.3	6.5		1.2	1.2	1.1	0.8	
4	-0.2	-0.3	-0.3	-0.3		0.1	0.0	0.0	-0.3	
5	1.3	1.3	1.3	1.3		0.0	0.0	0.0	-0.1	
6	-0.1	-0.1	-0.1	-0.1		-0.2	-0.2	-0.2	-0.2	
7	0.1	0.1	0.1	0.1		0.1	0.1	0.1	0.1	
8	0.0	-0.1	0.0	0.0		0.1	0.1	0.1	0.1	
9	0.7	0.7	0.7	0.7		-0.1	-0.1	-0.1	-0.1	
10	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	

Nominal ramp-rate is 10 A s⁻¹

Relatively small ramp-rate effects as expected because of the cored cable

Cryogenic temperature 1.9 K: Decay and snapback

Cryogenic temperature 1.9 K: Effects of flux jumps

At low current, noise on the measured magnetic field can be associated with flux jump

Larger on MBHSP101 and almost invisible on MBHSP103

Cable RRP 108/127 shows stronger effects because of larger filaments

Summary

- Magnets measured up to now:
 - 6 single aperture and 2 double aperture models
 - Ambient temperature
 - Cryogenic temperature
 - One full length prototype
 - Ambient temperature
- Main results
 - TF in general agreement with the calculations
 - Fine tuning of the calculations
 - Field quality
 - Geometric
 - Affected by insulation thickness on short models
 - Improvement on the prototype
 - Persistent current effects
 - ~25 units of change on b3 from injection to nominal
 - Saturation effects
 - Large saturation as expected on b2 and b4
 - Random component
 - In line with random block displacements with σ = 60 μm
 - Ramp rate
 - Small effects due to cored cable
 - Decay and snapback at injection
 - Small effect, inverse direction consistently measured at 1.9 K at CERN
 - Flux jumps effects visible below injection on the first models

