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Lecture 1: The Basics

1 Probability
What is it?
Frequentist Probability
Conditional Probability and Bayes’ Theorem
Bayesian Probability

2 Probability distributions and their properties
Expectation Values
Binomial, Poisson and Gaussian

3 Hypothesis testing
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Question: What is Probability?

Typical exam question
Q1 Explain what is meant by the Probability PA of an event A

[1]
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Four possible answers

PA is number obeying certain mathematical rules.

PA is a property of A that determines how often A happens

For N trials in which A occurs NA times, PA is the limit of NA/N for
large N

PA is my belief that A will happen, measurable by seeing what odds I
will accept in a bet.
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Mathematical

Kolmogorov Axioms:

For all A ⊂ S
PA ≥ 0
PS = 1
P(A∪B) = PA + PB if A ∩ B = ϕ and A,B ⊂ S

From these simple axioms a complete and complicated structure can be
erected. E.g. show PA = 1− PA, and show PA ≤ 1....

But!!!

This says nothing about what PA actually means.

Kolmogorov had frequentist probability in mind, but these axioms apply to
any definition.

Roger Barlow ( Huddersfield) Statistics for Particle Physics August 2018 5 / 34



Classical
or Real probability

Evolved during the 18th-19th century
Developed (Pascal, Laplace and
others) to serve the gambling
industry.

Two sides to a coin - probability 1
2

for each face

Likewise 52 cards in a pack, 6 sides
to a dice...

Answers questions like ’What is the
probability of rolling more than 10
with 2 dice?’

Problem: cannot be applied to continuous variables. Symmetry gives
different answers working with θ or sinθ or cosθ. Bertan’s paradoxes.
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Frequentist
The usual definition taught in schools and undergrad classes

PA = lim
N→∞

NA

N

N is the total number of events in the ensemble (or collective)

The probability of a coin landing heads up is 1
2 because if you toss a coin

1000 times, one side will come down ∼ 500 times.

The lifetime of a muon is 2.2µs because if you take 1000 muons and wait
2.2µs, then ∼ 368 will remain. The probability that a DM candidate will
be found in your detector is [ insert value ] because of 1,000,000
(simulated) DM candidates [ insert value × 1,000,000 ] passed the
selection cuts

Important

PA is not just a property of A, but a joint property of A and the ensemble.
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Problems (?) for Frequentist Probability

More than one ensemble
German life insurance companies pay out
on 0.4% of 40 year old male clients.
Your friend Hans is 40 today. What is
the probability that he will survive to see
his 41st birthday?
99.6% is an answer (if he’s insured)
But he is also a non-smoker and
non-drinker - so maybe 99.8%?
He drives a Harley-Davidson - maybe
99.0%?
All these numbers are acceptable
What is the probability that a K+ will
be recognised by your PID?
Simulating lots of K+ mesons you can
count to get P = Nacc/Ntot

These can be divided by kaon energy,
kaon angle, event complexity... and will
give different probabilities ... All correct.

There may be no Ensemble
What is the probability that it will rain
tomorrow?

There is only one tomorrow. It will
either rain or not. Prain is either 0 or 1
and we won’t know which until
tomorrow gets here

What is the probability that there is a
supersymmetric particle with mass below
2 TeV?

There either is or isn’t. It is either 0 or 1
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Bayes’ theorem
Bayes’ Theorem applies (and is useful) in any probability model

Conditional Probability: P(A|B): probability for A, given that B is true.
Example: P(♠A) = 1

52 and P(♠A|Black) = 1
26

Theorem

P(A|B) = P(B|A)
P(B)

× P(A)

Proof.

The probabiilty that A and B are both true can be written in two ways
P(A|B)× P(B) = P(A&B) = P(B|A)× P(A)

Throw away middle term and divide by P(B)
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Bayes’ theorem
Examples

Example

P(♠A|Black) = P(Black|♠A)
P(Black) P(♠A) = 1

1
2

× 1
52 = 1

26

Example

Example: In a beam which is 90% π, 10% K , kaons have 95% probability
of giving no Cherenkov signal; pions have 5% probability of giving none.
What is the probability that a particle that gave no signal is a K?
P(K |no signal) = P(no signal |K)

P(no signal) × P(K ) = 0.95
0.95×0.1+0.05×0.9 × 0.1 = 0.68

This uses the (often handy) breakdown:
P(B) = P(B|A)× P(A) + P(B|A)× P(A)
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Bayesian Probability

Probability expresses your belief in A. 1
represents certainty, 0 represents total disbelief

Intermediate values can be calibrated by asking
whether you would prefer to bet on A, or on a
white ball being drawn from an urn containing a
mix of white and black balls.

This avoids the limitations of frequentist
probability - coins, dice, kaons, rain tomorrow,
existence of SUSY can all have probabilities.
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Bayesian Probability and Bayes Theorem

Re-write Bayes’ theorem as

P(Theory |Data) = P(Data|Theory)
P(Data)

× P(Theory)

Posterior ∝ Likelihood × Prior

Works sensibly

Data predicted by theory boosts belief - moderated by probability it could
happen anyway

Can be chained.

Posterior from first experiment can be prior for second experiment. And so
on. (Order doesn’t matter)
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From Prior Probability to Prior Distribution

Suppose theory contains parameter a: (mass, coupling, decay rate...)

Prior probability distribution P0(a)∫ a2
a1

P0(a) da is your prior belief that a lies between a1 and a2∫∞
−∞ P0(a) da = 1 (or: your prior belief that the theory is correct)
Generalise the number P(data|theory) to the function L(x |a)
Bayes’ Theorem given data x the posterior is : P1(a) ∝ L(x |a)P0(a)

If range of a infinite, P0(a) may be vanishingly small (’improper prior’). Not a
problem. Just normalise P1(a)
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Shortcomings of Bayesian Probability
Subjective Probability

Your P0(a) and my P0(a) may be different. How can we compare results?

What is the right prior?

Is the wrong question.

‘Principle of ignorance’ - take P(a) constant (uniform distribution). But
then not constant in a2 or

√
a or ln a, which are equally valid parameters.

Jefffreys’ Objective Priors

Choose a flat prior in a transformed variable a′ for which the Fisher

information, −
⟨
∂2L(x ;a)

∂a2

⟩
is flat. Not universally adopted for various

reasons.

With lots of data, P1(a) decouples from P0(a). But not with little data..

Right thing to do: try several forms of prior and examine spread of results
(‘robustness under choice of prior’)
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Just an example

Measure a = 4.0± 1.0. Likelihood is Gaussian (coming up!)

Taking a prior uniform in a gives a posterior with a mean of 4.0 and a
standard deviation of 1.0 (red curve)

Taking a prior uniform in ln a shifts the posterior significantly.

Exercise

Try this for yourself with various values
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Heretical idea - maybe classical probability still has a place?

Quantum Mechanics gives probabilities.
If PA is not ‘real’ - either because it depends on an arbitrary ensemble, or because
is a subjective belief – then it looks like there is nothing ‘real’ in the universe.

The state of a coin - or an electron spin - having probability 1
2 makes sense.

The lifetime of a muon - i.e. probability per unit time that it will decay - seems to
be a well-defined quantity, a property of the muon and independent of any
ensemble, or any Bayesian belief.

The probability a muon will produce a signal in your muon detector seems like a
well-defined quantity, if you specify the 4 momentum and the state of the
detector ...
Of course the inverse probability ”What is the probability that a muon signal in
my detector comes from a real muon, not background’ is not intrinsically defined.

Perhaps classical probability has a place in physics - but not in interpreting results.

Do not mention this to a statistician or they will think you’re crazy
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Probability Distributions and pdfs

Integer Values

Numbers of positive tracks, numbers of identified muons, numbers of
events..
Generically call this r . Probabilities P(r)

Real-number Values

Energies, angles, invariant masses...
Generically call this x . Probability Density Functions P(x).
P(x) has dimensions of [x ]−1.

∫ x2
x1

P(x)dx or P(x) dx are probabilities

Sometimes also use cumulative C (x) =
∫ x
−∞ P(x ′) dx ′
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Mean, Standard deviation, and expectation values

From P(r) or P(x) can form the Expectation Value

< f >=
∑
r

f (r)P(r) or < f >=

∫
f (x)P(x) dx

Sometimes written E (f )
In particular the mean µ =< r >=

∑
r rP(r) or < x >=

∫
xP(x) dx

and higher moments µk =< rk >=
∑

r r
kP(r) or < xk >=

∫
xkP(x) dx

and central moments
µ′k =< (r −µ)k >=

∑
r (r −µ)kP(r) or < (x−µ)k >=

∫
(x−µ)kP(x) dx

The Variance and Standard Deviation

µ′2 = V =
∑

r (r − µ)2P(r) =< r2 > − < r >2

or
∫
(x − µ)2P(x) dx =< x2 > − < x >2

The standard deviation is the square root of the variance σ =
√
V

Statisticians usually use variance. Physicists usually use standard deviation
Skew is < (x− < x >)3 > /σ3 and Kurtosis is < (x− < x >)4/σ4 − 3
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Covariance and Correlation

2-dimensional data (x , y)
Form < x >,< y >, σx etc
Also other quantities

Covariance

Cov(x , y) =< (x − µx)(y − µy ) >=< xy > − < x >< y >

Correlation

ρ = Cov(x ,y)
σxσy

ρ lies between 1 (complete correlation) and -1 (complete anticorrelation).
ρ = 0 if x and y are independent.
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Covariance and Correlation (continued)

Many Dimensions (x1, x2, x3 . . . xn)

Covariance matrix Vij =< xixj > − < xi >< xj >

Correlation matrix ρij =
Vij

σiσj

Diagonal of V is σ2i

Diagonal of ρ is 1.
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The Binomial Distribution

Binomial: Number of successes in N trials, each with probability p of
success

P(r ; p,N) =
N!

r !(N − r)!
prq1−r (q ≡ 1− p)

Binomial distributions
for
(1) N = 10, p = 6
(2) N = 10, p = 0.9
(3) N = 15, p = 0.1
(4) N = 25, p = 0.6
Mean µ = Np, Variance V = Npq, Standard Deviation σ =

√
Npq
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The Poisson Distribution

Number of events occurring at random rate λ

P(r ;λ) = e−λλ
r

r !

Limit of binomial as N → ∞, p → 0 with np = λ = constant

Poisson distributions for
(1) λ = 5
(2) λ = 1.5
(3) λ = 12
(4) λ = 50
Mean µ = λ, Variance V = λ, Standard Deviation σ =

√
λ =

√
µ

Meet this a lot as it applies to event counts - on their own or in histogram
bins
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Pop Quiz

You need to know the efficiency of your PID system for positrons

Find 1000 data events where 2 tracks have a combined mass of 3.1 GeV
(J/ψ) and negative track is identified as an e−. (‘Tag-and-probe’
technique)
In 900 events the e+ is also identified. In 100 events it is not. Efficiency is
90%
What about the error?
Colleague A says

√
900 = 30 so efficiency is 90.0± 3.0%

Colleague B says
√
100 = 10 so efficiency is 90.0± 1.0%

Which is right?

Neither - both are wrong

This is binomial not Poisson: p = 0.9,N = 1000
Error is

√
Npq =

√
1000× 0.9× 0.1 (or

√
1000× 0.1× 0.9)

=
√
90 = 9.49 → Efficiency 90.0± 0.9 %
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The Gaussian

The Formula

P(x ;µ, σ) =
1

σ
√
2π

e−
(x−µ)2

2σ2

The Curve

Only 1 Gaussian curve, as µ and σ are just location and scale parameters

Properties

Mean is µ and standard deviation σ. Skew and kurtosis are 0.
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The Central Limit Theorem
Why the Gaussian is so important

If the variable X is the sum of N variables x1, x2 . . . xN then

1 Means add: < X >=< x1 > + < x2 > + · · · < xN >

2 Variances add: VX = V1 + V2 + . . .VN

3 If the variables xi are independent and identically distributed (i.i.d.)
then P(X ) tends to a Gaussian for large N

(1) is obvious
(2) is pretty obvious, and means that standard deviations add in
quadrature, and that the standard deviation of an average falls like 1√

N
(3) applies whatever the form of the original p(x)
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Demonstration

Take a uniform distribution from 0 to 1. It is flat. Add two such numbers
and the distribution is triangular, between 0 and 2.

With 3 numbers, it gets curved. With 10 numbers it looks pretty Gaussian
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Proof

Introduce the Characteristic Function < e ikx >=
∫
e ikxP(x) dx = P̃(k)

Expand the exponential as a series

< e ikx >=< 1+ikx+ (ikx)2

2! + (ikx)3

3 · · · >= 1+ik < x > +(ik)2<x2>
2! +(ik3)<x3>

3! . . .

Take logarithm and use expansion ln(1 + z) = z − z2

2 + z3

3 . . .
this gives power series in (ik), where coefficient κr

r ! of (ik)r is made up of
expectation values of x of total power r
κ1 =< x >, κ2 =< x2 > − < x >2, κ3 =< x3 > −3 < x2 >< x > +2 < x >3

. . . These are called the Semi-invariant cumulants of Thièle . Under a change of
scale α, κr → αrκr . Under a change in location only κ1 changes.
If X is the sum of i.i.d. random variables: x1 + x2 + x3... then P(X ) is the
convolution of P(x) with itself N times
The FT of convolution is the product of the individual FTs
The logarithm of a product is the sum of the logarithms
So P(X ) has cumulants Kr = Nκr
To make graphs commensurate, need to scale X axis by standard deviation, which
grows like

√
N. Cumulants of scaled graph K ′

r = N1−r/2κr
As N → ∞ these vanish for r > 2. Leaving a quadratic.
If the log is a quadratic, the exponential is a Gaussian. So P̃(X ) is Gausian.
The FT of a Gaussian is a Gaussian. QED.
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Gaussian or Normal?

Statisticians call it the ‘Normal’ distribution. Physicists don’t. But be
prepared.

Even if the distributions are not identical, the CLT tends to apply, unless
one (or two) dominates.

Most ‘errors’ fit this, being compounded of many different sources.
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Hypothesis Testing: What is it?

Making choices

Is this track a pion or a kaon?

Is this event signal or background?

Is the detector performance degrading with time?

Does the data agree with the Standard Model prediction or not?
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Type I and Type II errors

Suppose you measure some parameter x which is related to what you are
trying to measure.
(May well be output from a neural network or other ML system)

Imposing a cut as shown:
Lose fraction α of signal. (‘Type I error’). α is the significance
Admit fraction β of background. (‘Type II error’). 1− β is the power
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Where should I put the cut?
Strategy for the cut depends on three things - hypothesis testing only covers one of them

Performance

α and β as functions of the cut value

Prior signal to noise ratio

These plots are normalised to 1. Red curve is (probably) MUCH bigger.

Penalties

You have a trade-off between efficiency and purity: what are they worth?
In medical decisions, type I errors are much worse than type II.
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The Neymann-Pearson Lemma

Suppose S and B curves are more complicated - or x is multidimensional?

N & P say: include regions of greatest S(x)
B(x) (ratio of likelihoods)

For a given α, this gives the smallest β (‘Most powerful at a given
significance’)
Proof: if you remove a small region from ’accept’ to ’reject’ it has to be
replaced by equivalent which (by construction) brings more background.
However complicated, problem reduces to a single monotonic variable S

B
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Efficiency, Purity, and ROC plots

Performance shown by ROC (‘Receiver Operating Characterisic’) plots.
Plot fraction of background accepted (β) against fraction of signal
retained (1− α).
Effect of increasing cut goes from very loose at top right (all data
accepted) to very tight at bottom left (all data rejected).
Diagonal line corresponds to no discrimination - curves identical
The further the actual llne bulges away from that, the better
Warning: ’Background Effcy’,’Contamination’,’Purity’ are used
ambiguously

Roger Barlow ( Huddersfield) Statistics for Particle Physics August 2018 33 / 34



The Null Hypothesis

To show an effect is present

Eating broccoli makes you smart
Facebook advertising increases sales
A new drug increases patient survival rates
The data shows Beyond-the-Standard-Model physics

You have to try (your best) and fail to disprove the opposite: The Null
Hypothesis H0

Broccoli lovers and broccoli loathers have the same IQ
Sales are independent of the Facebook advertising budget
The survival rates for old and new treatments are the same
The Standard Model (functions or Monte-Carlo) describe the data

If the null hypothesis is not tenable, you’ve proved your point
α - the ’significance’ - is the probability that the null hypothesis will be
wrongly rejected, and you’ll claim an effect where there isn’t any.
There is a minefield of difficulties. Correlation v. Causation. Multiple trials
and self-censorship... More on this in Part 3.
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