QCD (for colliders) Lecture 1: Introduction

Gavin Salam

CERN

At the Fourth Asia-Europe-Pacific School of High-Energy Physics September 2018, Quy Nhon, Vietnam

QUANTUM CHROMODYNAMICS

The theory of quarks, gluons and their interactions

It's central to all modern colliders. (And QCD is what we're made of)

- Quarks (and anti-quarks): they come in 3 colours
- Gluons: a bit like photons in QED
 But there are 8 of them, and they're colour charged
- ► And a coupling, \(\alpha_s\), that's not so small and runs fast At LHC, in the range 0.08(@ 5 TeV) to \(\mathcal{O}\) (1)(@ 0.5 GeV)

I'll try to give you a feel for:

How QCD works

How theorists handle QCD at high-energy colliders

How you can work with QCD at high-energy colliders

A proton-proton collision: INITIAL STATE

proton

proton

A proton-proton collision: FINAL STATE

(actual final-state multiplicity ~ several hundred hadrons)

3 Signal and background models

The ggF and VBF production modes for $H \rightarrow WW^*$ are modelled at next-to-leading order (NLO) in the strong coupling $\alpha_{\rm S}$ with the Powneg MC generator [22–25], interfaced with PYTHIA8 [26] (version 8.165) for the parton shower, hadronisation, and underlying event. The CT10 [27] PDF set is used and the parameters of the PYTHIA8 generator controlling the modelling of the parton shower and the underlying event are those corresponding to the AU2 set [28]. The Higgs boson mass set in the generation is 125.0 GeV, which is close to the measured value. The POWHEG ggF model takes into account finite quark masses and a running-width Breit-Wigner distribution that includes electroweak corrections at NLO [29]. To improve the modelling of the Higgs boson $p_{\rm T}$ distribution, a reweighting scheme is applied to reproduce the prediction of the next-to-next-to-leading-order (NNLO) and next-to-next-to-leading-logarithm (NNLL) dynamic-scale calculation given by the HRes 2.1 program [30] Events with ≥ 2 jets are further reweighted to reproduce the p_T^H spectrum predicted by the NLO POWHEG simulation of Higgs boson production in association with two jets (H + 2 jets) [31]. Interference with continuum WW production [32, 33] has a negligible impact on this analysis due to the transverse-mass selection criteria described in Section 4 and is not included in the signal model.

Jets are reconstructed from topological clusters of calorimeter cells [50–52] using the anti- k_t algorithm with a radius parameter of R = 0.4 [53]. Jet energies are corrected for the effects of calorimeter non-

ATLAS H \rightarrow WW* ANALYSIS [1604.02997]

That whole paragraph was just for the red part of this distribution (the Higgs signal).

Complexity of modelling each of the backgrounds is comparable Quarks — 3 colours: $\psi_a =$

$$\left(egin{array}{c} \psi_1 \ \psi_2 \ \psi_3 \end{array}
ight)$$

Quark part of Lagrangian:

Let's write down QCD in full detail

(There's a lot to absorb here — but it should become more palatable as we return to individual elements later)

A representation is: $t^{\mathcal{A}}=rac{1}{2}\lambda^{\mathcal{A}}$,

$$\begin{split} \lambda^{1} &= \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{2} &= \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{3} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{4} &= \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \\ \lambda^{5} &= \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \ \lambda^{6} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ \lambda^{7} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ \lambda^{8} &= \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}} \end{pmatrix}, \end{split}$$

Lagrangian + colour

Quarks — 3 colours: $\psi_a = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$

Quark part of Lagrangian:

$$\mathcal{L}_{q} = \bar{\psi}_{a}(i\gamma^{\mu}\partial_{\mu}\delta_{ab} - g_{s}\gamma^{\mu}t^{C}_{ab}\mathcal{A}^{C}_{\mu} - m)\psi_{b}$$

SU(3) local gauge symmetry $\leftrightarrow 8 \ (= 3^2 - 1)$ generators $t^1_{ab} \dots t^8_{ab}$ corresponding to 8 gluons $\mathcal{A}^1_{\mu} \dots \mathcal{A}^8_{\mu}$.

A representation is: $t^A = \frac{1}{2}\lambda^A$,

Lagrangian + colour

Quarks — 3 colours: $\psi_a = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}$

Quark part of Lagrangian:

$$\mathcal{L}_{q} = \bar{\psi}_{a}(i\gamma^{\mu}\partial_{\mu}\delta_{ab} - g_{s}\gamma^{\mu}t^{C}_{ab}\mathcal{A}^{C}_{\mu} - m)\psi_{b}$$

SU(3) local gauge symmetry $\leftrightarrow 8 \ (= 3^2 - 1)$ generators $t^1_{ab} \dots t^8_{ab}$ corresponding to 8 gluons $\mathcal{A}^1_\mu \dots \mathcal{A}^8_\mu$.

A representation is: $t^A = \frac{1}{2}\lambda^A$,

$$\lambda^{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ \lambda^{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\lambda^{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \ \lambda^{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ \lambda^{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \ \lambda^{8} = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & \frac{-2}{\sqrt{3}} \end{pmatrix},$$

Field tensor: $F^{A}_{\mu\nu} = \partial_{\mu}A^{A}_{\nu} - \partial_{\nu}A^{A}_{\nu} - g_{s}f_{ABC}A^{B}_{\mu}A^{C}_{\nu}$ $[t^{A}, t^{B}] = if_{ABC}t^{C}$

 f_{ABC} are structure constants of SU(3) (antisymmetric in all indices — SU(2) equivalent was ϵ^{ABC}). Needed for gauge invariance of gluon part of Lagrangian:

 $\mathcal{L}_{G} = -\frac{1}{4} F_{A}^{\mu\nu} F^{A\,\mu\nu}$

Field tensor: $F^{A}_{\mu\nu} = \partial_{\mu}A^{A}_{\nu} - \partial_{\nu}A^{A}_{\nu} - g_{s}f_{ABC}A^{B}_{\mu}A^{C}_{\nu}$ $[t^{A}, t^{B}] = if_{ABC}t^{C}$

 f_{ABC} are structure constants of SU(3) (antisymmetric in all indices — SU(2) equivalent was ϵ^{ABC}). Needed for gauge invariance of gluon part of Lagrangian:

 $\mathcal{L}_{G} = -\frac{1}{4} F_{A}^{\mu\nu} F^{A\,\mu\nu}$

Two main approaches to solving it

- Numerical solution with discretized space time (lattice)
- Perturbation theory: assumption that coupling is small

Also: effective theories

- Put all the quark and gluon fields of QCD on a 4D-lattice NB: with imaginary time
- Figure out which field configurations are most likely (by Monte Carlo sampling).
- You've solved QCD

image credits: fdecomite [Flickr]

Lattice hadron masses

Lattice QCD is great at calculation static properties of a single hadron.

E.g. the hadron mass spectrum

Durr et al '08

How big a lattice do you need for an LHC collision @ 14 TeV?

Lattice spacing:
$$rac{1}{14 \; {
m TeV}} \sim 10^{-5} \, {
m fm}$$

Lattice extent:

- ► non-perturbative dynamics for quark/hadron near rest takes place on timescale $t \sim \frac{1}{0.5 \text{ GeV}} \sim 0.4 \text{ fm}/c$
- \blacktriangleright But quarks at LHC have effective boost factor $\sim 10^4$
- \blacktriangleright So lattice extent should be \sim 4000 fm

Perturbation theory

Relies on idea of order-by-order expansion small coupling, $\alpha_{\sf s} \ll 1$

Interaction vertices of Feynman rules:

These expressions are fairly complex, so you really don't want to have to deal with too many orders of them! i.e. α_s had better be small...

A gluon emission **repaints** the quark colour. A gluon itself carries colour and anti-colour.

What does "ggg" Feynman rule mean?

A gluon emission also repaints the gluon colours. Because a gluon carries colour + anti-colour, it emits \sim twice as strongly as a quark (just has colour)

$$Tr(t^{A}t^{B}) = T_{R}\delta^{AB}, \quad T_{R} = \frac{1}{2}$$

$$\sum_{A} t^{A}_{ab}t^{A}_{bc} = C_{F}\delta_{ac}, \quad C_{F} = \frac{N^{2}_{c} - 1}{2N_{c}} = \frac{4}{3}$$

$$\sum_{C,D} f^{ACD}f^{BCD} = C_{A}\delta^{AB}, \quad C_{A} = N_{c} = 3$$

$$t^{A}_{ab}t^{A}_{cd} = \frac{1}{2}\delta_{bc}\delta_{ad} - \frac{1}{2N_{c}}\delta_{ab}\delta_{cd} \text{ (Fierz)}$$

$$\frac{b}{c} = \frac{1}{2} \sqrt{-\frac{1}{2N_{c}}}$$

$$Tr(t^{A}t^{B}) = T_{R}\delta^{AB}, \quad T_{R} = \frac{1}{2}$$

$$\sum_{A} t^{A}_{ab}t^{A}_{bc} = C_{F}\delta_{ac}, \quad C_{F} = \frac{N^{2}_{c} - 1}{2N_{c}} = \frac{4}{3}$$

$$\sum_{C,D} f^{ACD}f^{BCD} = C_{A}\delta^{AB}, \quad C_{A} = N_{c} = 3$$

$$t^{A}_{ab}t^{A}_{cd} = \frac{1}{2}\delta_{bc}\delta_{ad} - \frac{1}{2N_{c}}\delta_{ab}\delta_{cd} \text{ (Fierz)}$$

$$\frac{b}{c} = \frac{1}{2} \sqrt{-\frac{1}{2N_{c}}}$$

$$Tr(t^{A}t^{B}) = T_{R}\delta^{AB}, \quad T_{R} = \frac{1}{2}$$

$$\sum_{A} t^{A}_{ab}t^{A}_{bc} = C_{F}\delta_{ac}, \quad C_{F} = \frac{N^{2}_{c} - 1}{2N_{c}} = \frac{4}{3}$$

$$\sum_{C,D} f^{ACD}f^{BCD} = C_{A}\delta^{AB}, \quad C_{A} = N_{c} = 3$$

$$t^{A}_{ab}t^{A}_{cd} = \frac{1}{2}\delta_{bc}\delta_{ad} - \frac{1}{2N_{c}}\delta_{ab}\delta_{cd} \text{ (Fierz)}$$

$$\frac{b}{c} = \frac{1}{2} \sqrt{-\frac{1}{2N_{c}}}$$

$$Tr(t^{A}t^{B}) = T_{R}\delta^{AB}, \quad T_{R} = \frac{1}{2}$$

$$\sum_{A} t^{A}_{ab}t^{A}_{bc} = C_{F}\delta_{ac}, \quad C_{F} = \frac{N^{2}_{c} - 1}{2N_{c}} = \frac{4}{3}$$

$$\sum_{C,D} f^{ACD}f^{BCD} = C_{A}\delta^{AB}, \quad C_{A} = N_{c} = 3$$

$$t^{A}_{ab}t^{A}_{cd} = \frac{1}{2}\delta_{bc}\delta_{ad} - \frac{1}{2N_{c}}\delta_{ab}\delta_{cd} \text{ (Fierz)}$$

$$\frac{b}{c} = \frac{1}{2} \sqrt{-\frac{1}{2N_{c}}}$$

QCD lecture 1 (p. 19) Basic methods

How big is the coupling?

All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale (Q^2) of your process.

The QCD coupling, $\alpha_s(Q^2)$, runs fast:

$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = \beta(\alpha_s), \qquad \beta(\alpha_s) = -\alpha_s^2(b_0 + b_1\alpha_s + b_2\alpha_s^2 + \ldots),$$

$$b_0 = \frac{11C_A - 2n_f}{12\pi}, \qquad b_1 = \frac{17C_A^2 - 5C_An_f - 3C_Fn_f}{24\pi^2} = \frac{153 - 19n_f}{24\pi^2}$$

Note sign: Asymptotic Freedom, due to gluon to self-interaction 2004 Novel prize: Gross, Politzer & Wilczek

 QCD lecture 1 (p. 19) Basic methods

All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale (Q^2) of your process.

The QCD coupling, $\alpha_s(Q^2)$, runs fast:

$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = \beta(\alpha_s), \qquad \beta(\alpha_s) = -\alpha_s^2(b_0 + b_1\alpha_s + b_2\alpha_s^2 + \ldots),$$

$$b_0 = \frac{11C_A - 2n_f}{12\pi}, \qquad b_1 = \frac{17C_A^2 - 5C_An_f - 3C_Fn_f}{24\pi^2} = \frac{153 - 19n_f}{24\pi^2}$$

Note sign: Asymptotic Freedom, due to gluon to self-interaction 2004 Novel prize: Gross, Politzer & Wilczek

At high scales Q, coupling becomes small

 \blacktriangleright quarks and gluons are almost free, interactions are weak

At low scales, coupling becomes strong

 \blacktriangleright quarks and gluons interact strongly — confined into hadrons

Perturbation theory fails.

Running coupling (cont.)

Solve
$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = -b_0 \alpha_s^2 \Rightarrow \alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + b_0 \alpha_s(Q_0^2) \ln \frac{Q^2}{Q_0^2}} = \frac{1}{b_0 \ln \frac{Q^2}{\Lambda^2}}$$

 $\Lambda \simeq 0.2$ GeV (aka Λ_{QCD}) is the fundamental scale of QCD, at which coupling blows up.

- A sets the scale for hadron masses (NB: A not unambiguously defined wrt higher orders)
- ► Perturbative calculations valid for scales Q ≫ Λ.

Running coupling (cont.)

Solve
$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = -b_0 \alpha_s^2 \Rightarrow \alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + b_0 \alpha_s(Q_0^2) \ln \frac{Q^2}{Q_0^2}} = \frac{1}{b_0 \ln \frac{Q^2}{\Lambda^2}}$$

 $\Lambda \simeq 0.2$ GeV (aka Λ_{QCD}) is the fundamental scale of QCD, at which coupling blows up.

- A sets the scale for hadron masses (NB: A not unambiguously defined wrt higher orders)
- ► Perturbative calculations valid for scales Q ≫ Λ.

STRONG-COUPLING DETERMINATIONS

Bethke, Dissertori & GPS in PDG '16

- Most consistent set of independent determinations is from lattice
- ➤ Three best determinations are from lattice QCD (HPQCD, 1004.4285, 1408.4169, ALPHA 1706.03821)
 α_s(M_Z) = 0.1183 ± 0.0007 (0.6%)
 [heavy-quark correlators]
 α_s(M_Z) = 0.1183 ± 0.0007 (0.6%)
 [Wilson loops]
 α_s(M_Z) = 0.1185 ± 0.0008 (0.7%)
 [Schrodinger Functional]
- Many determinations quote small uncertainties (≤1%). All are disputed!
- Some determinations quote anomalously small central values (~0.113 v. world avg. of 0.1181±0.0011). Also disputed

QCD perturbation theory (PT) & LHC?

- ► Higgs, SM and searches at colliders probe scales Q ~ p_t ~ 50 GeV - 5 TeV The coupling certainly is small there!
- ▶ But we're colliding protons, $m_p \simeq 0.94$ GeV The coupling is large!

When we look at QCD events (this one is interpreted as $e^+e^- \rightarrow Z \rightarrow q\bar{q}$), we see:

- hadrons (PT doesn't hold for them)
- lots of them so we can't say 1 quark/gluon
 ~ 1 hadron, and we limit ourselves to 1 or 2 orders of PT.

QCD perturbation theory (PT) & LHC?

- ► Higgs, SM and searches at colliders probe scales Q ~ p_t ~ 50 GeV - 5 TeV The coupling certainly is small there!
- ▶ But we're colliding protons, $m_p \simeq 0.94$ GeV The coupling is large!
- When we look at QCD events (this one is interpreted as $e^+e^- \rightarrow Z \rightarrow q\bar{q}$), we see:
- hadrons (PT doesn't hold for them)
- Iots of them so we can't say 1 quark/gluon ~ 1 hadron, and we limit ourselves to 1 or 2 orders of PT.

Neither lattice QCD nor perturbative QCD can offer a full solution to using QCD at colliders

What the community has settled on is perturbative QCD inputs + non-perturbative *modelling/factorisation*

Rest of this lecture: take a simple environment ($e^+e^- \rightarrow$ hadrons) and see how PT allows us to understand why QCD events look the way they do.

Next lectures: dealing with incoming protons, jets, modern predictive tools

QCD lecture 1 (p. 24) $\Box e^+e^- \rightarrow q\bar{q}$ \Box Soft-collinear emission

Soft gluon amplitude

Start with
$$\gamma^* \rightarrow q\bar{q}$$
:

 $\mathcal{M}_{q\bar{q}} = -\bar{u}(p_1)ie_q\gamma_\mu v(p_2)$

Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1) ig_s \not\in t^A \frac{i}{\not p_1' + \not k} ie_q \gamma_\mu v(p_2)$$
$$- \bar{u}(p_1) ie_q \gamma_\mu \frac{i}{\not p_2' + \not k} ig_s \not\in t^A v(p_2)$$

Make gluon *soft* $\equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$\mathcal{M}_{qar{q}g}\simeqar{u}(p_1)ie_q\gamma_\mu t^A v(p_2)\,g_s\left(rac{p_1.\epsilon}{p_1.k}-rac{p_2.\epsilon}{p_2.k}
ight)$$

pv(p) = 0,pk + kp = 2p.k

QCD lecture 1 (p. 24) $\Box e^+e^- \rightarrow q\bar{q}$ \Box Soft-collinear emission

Soft gluon amplitude

Start with
$$\gamma^* \rightarrow q\bar{q}$$
:

$$\mathcal{M}_{q\bar{q}} = -\bar{u}(p_1)ie_q\gamma_\mu v(p_2)$$

Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1)ig_s \not\in t^A \frac{i}{\not p_1' + \not k}ie_q \gamma_\mu v(p_2) \qquad \stackrel{-ie\gamma_\mu}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{-ie\gamma_\mu}{\longrightarrow} \stackrel{\rho_2}{\longrightarrow} \stackrel{ie\gamma_\mu}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{ie\gamma_\mu}{\longrightarrow} \stackrel{\rho_2}{\longrightarrow} \stackrel{\mu_1}{\longrightarrow} \stackrel{\mu_2}{\longrightarrow} \stackrel$$

Make gluon $soft \equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$\mathcal{M}_{q\bar{q}g} \simeq ar{u}(p_1)ie_q\gamma_\mu t^A v(p_2) g_s\left(rac{p_1.\epsilon}{p_1.k} - rac{p_2.\epsilon}{p_2.k}
ight)$$

QCD lecture 1 (p. 24) $L_{e^+e^-} \rightarrow q\bar{q}$ Soft-collinear emission

art with $\gamma^* \rightarrow a\bar{a}$.

$$\bar{u}(p_{1})ig_{s} \not\in t^{A} \frac{i}{\not p_{1}^{\prime} + \not k} ie_{q} \gamma_{\mu} v(p_{2}) = -ig_{s} \bar{u}(p_{1}) \not\in \frac{\not p_{1}^{\prime} + \not k}{(p_{1} + k)^{2}} e_{q} \gamma_{\mu} t^{A} v(p_{2})$$

$$Use \notA \notB = 2A.B - \not B \notA:$$

$$= -ig_{s} \bar{u}(p_{1})[2\epsilon.(p_{1} + k) - (\not p_{1}^{\prime} + \not k) \not\in] \frac{1}{(p_{1} + k)^{2}} e_{q} \gamma_{\mu} t^{A} v(p_{2})$$

$$Use \ \bar{u}(p_{1}) \not p_{1}^{\prime} = 0 \text{ and } k \ll p_{1} (p_{1}, k \text{ massless})$$

$$\simeq -ig_{s} \bar{u}(p_{1})[2\epsilon.p_{1}] \frac{1}{(p_{1} + k)^{2}} e_{q} \gamma_{\mu} t^{A} v(p_{2})$$

$$= -ig_{s} \frac{p_{1}.\epsilon}{p_{1}.k} \underbrace{\bar{u}(p_{1})e_{q} \gamma_{\mu} t^{A} v(p_{2})}_{\text{pure QED spinor structure}}$$

QCD lecture 1 (p. 24) $\Box e^+e^- \rightarrow q\bar{q}$ \Box Soft-collinear emission

Soft gluon amplitude

Start with
$$\gamma^* \rightarrow q\bar{q}$$
:

$$\mathcal{M}_{q\bar{q}} = -\bar{u}(p_1)ie_q\gamma_\mu v(p_2)$$

Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1)ig_s \not\in t^A \frac{i}{\not p_1' + \not k}ie_q \gamma_\mu v(p_2) \qquad \stackrel{-ie_{\gamma_\mu}}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{-ie_{\gamma_\mu}}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{-ie_{\gamma_\mu}}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{-ie_{\gamma_\mu}}{\longrightarrow} \stackrel{\rho_1}{\longrightarrow} \stackrel{\rho$$

Make gluon soft $\equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$\mathcal{M}_{q\bar{q}g} \simeq \bar{u}(p_1)ie_q\gamma_{\mu}t^A v(p_2) g_s\left(\frac{p_1.\epsilon}{p_1.k} - \frac{p_2.\epsilon}{p_2.k}\right) \qquad \not pv(p) = 0, \\ \not pk + k \not p = 2p.k$$
Squared amplitude

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}\cdot\epsilon}{p_{1}\cdot k} - \frac{p_{2}\cdot\epsilon}{p_{2}\cdot k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}\cdot k} - \frac{p_{2}}{p_{2}\cdot k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}\cdot p_{2}}{(p_{1}\cdot k)(p_{2}\cdot k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M_{q\bar{q}g}^2| \simeq \left(d\Phi_{q\bar{q}}|M_{q\bar{q}}^2|\right) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_F}{\pi} \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)}$$

$$\begin{array}{l} \theta \equiv \theta_{P1k} \\ \phi = \text{azimuth} \end{array}$$

Squared amplitude

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M^2_{q\bar{q}g}| \simeq (d\Phi_{q\bar{q}}|M^2_{q\bar{q}}|) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_F}{\pi} \frac{2p_{1}.p_2}{(2p_{1}.k)(2p_{2}.k)}$$

 $\begin{array}{l} \theta \equiv \theta_{P1k} \\ \phi = \text{azimuth} \end{array}$

Squared amplitude

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}.\epsilon}{p_{1}.k} - \frac{p_{2}.\epsilon}{p_{2}.k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}.k} - \frac{p_{2}}{p_{2}.k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}.p_{2}}{(p_{1}.k)(p_{2}.k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M^2_{q\bar{q}g}| \simeq (d\Phi_{q\bar{q}}|M^2_{q\bar{q}}|) \ rac{d^3 \vec{k}}{2E(2\pi)^3} C_F g_s^2 rac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{\rm s}C_{\rm F}}{\pi} \frac{2p_{\rm 1}.p_{\rm 2}}{(2p_{\rm 1}.k)(2p_{\rm 2}.k)}$$

 $\theta \equiv \theta_{P_1 k}$ $\phi = \text{azimuth}$

Squared amplitude

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}\cdot\epsilon}{p_{1}\cdot k} - \frac{p_{2}\cdot\epsilon}{p_{2}\cdot k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}\cdot k} - \frac{p_{2}}{p_{2}\cdot k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}\cdot p_{2}}{(p_{1}\cdot k)(p_{2}\cdot k)}$$

Include phase space:

$$d\Phi_{qar{q}g}|M^2_{qar{q}g}| \simeq (d\Phi_{qar{q}}|M^2_{qar{q}}|) \; rac{d^3ec{k}}{2E(2\pi)^3} C_F g_s^2 rac{2p_1.p_2}{(p_1.k)(p_2.k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \, d\cos\theta \, \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{s}C_{F}}{\pi} \frac{2p_{1}.p_{2}}{(2p_{1}.k)(2p_{2}.k)}$$

 $\theta \equiv \theta_{p_1 k}$ $\phi = \text{azimuth}$

Squared amplitude

0

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}\cdot\epsilon}{p_{1}\cdot k} - \frac{p_{2}\cdot\epsilon}{p_{2}\cdot k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}\cdot k} - \frac{p_{2}}{p_{2}\cdot k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}\cdot p_{2}}{(p_{1}\cdot k)(p_{2}\cdot k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M^2_{q\bar{q}g}| \simeq (d\Phi_{q\bar{q}}|M^2_{q\bar{q}}|) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{s}C_{F}}{\pi} \frac{2p_{1}.p_{2}}{(2p_{1}.k)(2p_{2}.k)}$$

 $\theta \equiv \theta_{p_1 k}$ $\phi = \text{azimuth}$

Squared amplitude

$$|M_{q\bar{q}g}^{2}| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_{1})ie_{q}\gamma_{\mu}t^{A}v(p_{2}) g_{s}\left(\frac{p_{1}\cdot\epsilon}{p_{1}\cdot k} - \frac{p_{2}\cdot\epsilon}{p_{2}\cdot k}\right) \right|^{2}$$
$$= -|M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\left(\frac{p_{1}}{p_{1}\cdot k} - \frac{p_{2}}{p_{2}\cdot k}\right)^{2} = |M_{q\bar{q}}^{2}|C_{F}g_{s}^{2}\frac{2p_{1}\cdot p_{2}}{(p_{1}\cdot k)(p_{2}\cdot k)}$$

Include phase space:

$$d\Phi_{q\bar{q}g}|M^2_{q\bar{q}g}| \simeq (d\Phi_{q\bar{q}}|M^2_{q\bar{q}}|) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1 \cdot p_2}{(p_1 \cdot k)(p_2 \cdot k)}$$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$$dS = EdE \ d\cos\theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_{s}C_{F}}{\pi} \frac{2p_{1}.p_{2}}{(2p_{1}.k)(2p_{2}.k)} \qquad \begin{array}{l} \theta \equiv \theta_{p_{1}k} \\ \phi = \text{azimuth} \end{array}$$

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$dS = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- It diverges for heta
 ightarrow 0 and $heta
 ightarrow \pi$ collinear divergence

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$d\mathcal{S} = \frac{2\alpha_{\rm s}C_F}{\pi} \, \frac{dE}{E} \frac{d\theta}{\sin\theta} \, \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- It diverges for $\theta \to 0$ and $\theta \to \pi$ collinear divergence

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$dS = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- ▶ It *diverges* for $\theta \rightarrow 0$ and $\theta \rightarrow \pi$ *collinear divergence*

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1-\cos^2\theta)}$$

So final expression for soft gluon emission is

$$dS = \frac{2\alpha_{\rm s}C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin\theta} \frac{d\phi}{2\pi}$$

NB:

- It diverges for $E \rightarrow 0$ infrared (or soft) divergence
- ▶ It diverges for $\theta \rightarrow 0$ and $\theta \rightarrow \pi$ collinear divergence

Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

QCD lecture 1 (p. 27)

 $e^+e^- \rightarrow q\bar{q}$ \Box Total X-sct

Total cross section must be *finite*. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} R(E/Q,\theta) - \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} V(E/Q,\theta) \right)$$

R(*E*/*Q*, θ) parametrises real matrix element for hard emissions, *E* ~ *Q*.
 V(*E*/*Q*, θ) parametrises virtual corrections for all momenta.

Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

QCD lecture 1 (p. 27)

 $e^+e^- \rightarrow q\bar{q}$ \Box Total X-sct

Total cross section must be *finite*. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} R(E/Q,\theta) - \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} V(E/Q,\theta) \right)$$

R(E/Q, θ) parametrises real matrix element for hard emissions, E ~ Q.
 V(E/Q, θ) parametrises virtual corrections for all momenta.

Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

QCD lecture 1 (p. 27)

 $^+e^- \rightarrow q\bar{q}$ – Total X-sct

Total cross section must be *finite*. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} R(E/Q,\theta) - \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} V(E/Q,\theta) \right)$$

R(*E*/*Q*, θ) parametrises real matrix element for hard emissions, *E* ~ *Q*.
 V(*E*/*Q*, θ) parametrises virtual corrections for all momenta.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

Result:

- corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:

Correct renorm: scale for $a_5:\mu\sim Q$ — perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - Transition to hadrons also occurs on long time scale (~ 1/A) and can also be ignored.
- Correct renorm, scale for α_s : $\mu \sim Q$ perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - ► Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- Correct renorm. scale for α_s : $\mu \sim Q$ perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- ▶ corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - ► Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- Correct renorm. scale for $lpha_{\sf s}$: $\mu \sim Q$ perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- ▶ corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - ► Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- Correct renorm. scale for α_s : $\mu \sim Q$ perturbation theory valid.

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin\theta} \left(R(E/Q,\theta) - V(E/Q,\theta) \right) \right)$$

- From calculation: $\lim_{E\to 0} R(E/Q, \theta) = 1$.
- ► For every divergence $R(E/Q, \theta)$ and $V(E/Q, \theta)$ should cancel:

$$\lim_{E\to 0}(R-V)=0\,,\qquad \qquad \lim_{\theta\to 0,\pi}(R-V)=0$$

- corrections to σ_{tot} come from hard ($E \sim Q$), large-angle gluons
- Soft gluons don't matter:
 - Physics reason: soft gluons emitted on long timescale ~ 1/(Eθ²) relative to collision (1/Q) cannot influence cross section.
 - ► Transition to hadrons also occurs on long time scale (~ 1/Λ) and can also be ignored.
- ▶ Correct renorm. scale for α_s : $\mu \sim Q$ perturbation theory valid.

Dependence of total cross section on only *hard* gluons is reflected in 'good behaviour' of perturbation series:

$$\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + 1.045 \frac{\alpha_{\mathsf{s}}(Q)}{\pi} + 0.94 \left(\frac{\alpha_{\mathsf{s}}(Q)}{\pi} \right)^2 - 15 \left(\frac{\alpha_{\mathsf{s}}(Q)}{\pi} \right)^3 + \cdots \right)$$

(Coefficients given for $Q = M_Z$)

Let's look at more "exclusive" quantities — structure of final state

Let's try and integrate emission probability to get the mean number of gluons emitted off a a quark with energy $\sim Q$:

$$\langle N_g \rangle \simeq \frac{2\alpha_{\rm s}C_F}{\pi} \int^Q \frac{dE}{E} \int^{\pi/2} \frac{d\theta}{\theta}$$

This diverges unless we cut the integral off for transverse momenta $(k_t \simeq E\theta)$ below some non-perturbative threshold, $Q_0 \sim \Lambda_{QCD}$. On the grounds that perturbation no longer applies for $k_t \sim \Lambda_{QCD}$ Language of quarks and gluons becomes meaningless

With this cutoff, result is:

$$\langle N_g \rangle \simeq rac{lpha_{s} C_F}{\pi} \ln^2 rac{Q}{Q_0} + \mathcal{O}\left(lpha_{s} \ln Q
ight)$$

Let's try and integrate emission probability to get the mean number of gluons emitted off a a quark with energy $\sim Q$:

$$\langle N_g \rangle \simeq \frac{2\alpha_{\rm s}C_F}{\pi} \int^Q \frac{dE}{E} \int^{\pi/2} \frac{d\theta}{\theta} \Theta(E\theta > Q_0)$$

This diverges unless we cut the integral off for transverse momenta $(k_t \simeq E\theta)$ below some non-perturbative threshold, $Q_0 \sim \Lambda_{QCD}$. On the grounds that perturbation no longer applies for $k_t \sim \Lambda_{QCD}$. Language of quarks and gluons becomes meaningless

With this cutoff, result is:

$$\langle N_g
angle \simeq rac{lpha_{
m s} C_F}{\pi} \ln^2 rac{Q}{Q_0} + \mathcal{O}\left(lpha_{
m s} \ln Q
ight)$$

QCD lecture 1 (p. 32) $e^+e^- \rightarrow q\bar{q}$ \Box How many gluons are emitted?

Suppose we take $Q_0 = \Lambda_{QCD}$, how big is the result? Let's use $\alpha_s = \alpha_s(Q) = 1/(2b \ln Q/\Lambda)$

[Actually, over most of integration range this is optimistically small]

$$\langle N_g
angle \simeq rac{lpha_{\sf s} C_F}{\pi} \ln^2 rac{Q}{\Lambda_{QCD}}
ightarrow rac{C_F}{2b\pi} \ln rac{Q}{\Lambda_{QCD}}$$

NB: given form for $\alpha_{\rm s},$ this is actually $\sim 1/\alpha_{\rm s}$

Put in some numbers: Q = 100 GeV, $\Lambda_{QCD} \simeq 0.2$ GeV, $C_F = 4/3$, $b \simeq 0.6$,

 $\longrightarrow \langle N_g \rangle \simeq 2.2$

Perturbation theory assumes that first-order term, $\sim \alpha_s$ should be $\ll 1$.

But the final result is $\sim 1/lpha_{\sf s} > 1...$ Is perturbation theory completely useless? QCD lecture 1 (p. 32) $e^+e^- \rightarrow q\bar{q}$ \Box How many gluons are emitted?

Suppose we take $Q_0 = \Lambda_{QCD}$, how big is the result? Let's use $\alpha_s = \alpha_s(Q) = 1/(2b \ln Q/\Lambda)$ [Actually, over most of integration range this is optimistically small]

$$\langle N_g \rangle \simeq rac{lpha_{\sf s} C_F}{\pi} \ln^2 rac{Q}{\Lambda_{QCD}} o rac{C_F}{2b\pi} \ln rac{Q}{\Lambda_{QCD}}$$

NB: given form for $\alpha_{\rm s},$ this is actually $\sim 1/\alpha_{\rm s}$

Put in some numbers: Q = 100 GeV, $\Lambda_{QCD} \simeq 0.2$ GeV, $C_F = 4/3$, $b \simeq 0.6$,

 $\longrightarrow \langle N_g \rangle \simeq 2.2$

Perturbation theory assumes that first-order term, $\sim \alpha_s$ should be $\ll 1$. But the final result is $\sim 1/\alpha_s > 1...$

Is perturbation theory completely useless?

Given this failure of first-order perturbation theory, two possible avenues.

1. Continue calculating the next order(s) and see what happens

2. Try to see if there exist other observables for which perturbation theory is better behaved

- Same divergence structures, regardless of where gluon is emitted from
- All that changes is the colour factor ($C_F = 4/3$ v. $C_A = 3$)
- Expect low-order structure $(\alpha_s \ln^2 Q)$ to be replicated at each new order

Start of with $q\bar{q}$

A gluon gets emitted at small angles

It radiates a further gluon

And so forth

Meanwhile the same happened on other side of event

And then a non-perturbative transition occurs

Giving a pattern of hadrons that "remembers" the gluon branching Hadrons mostly produced at small angle wrt $q\bar{q}$ directions or with low energy QCD lecture 1 (p. 36) $e^+e^- \rightarrow q\bar{q}$ \Box How many gluons are emitted?

Gluon v. hadron multiplicity

It turns out you can calculate the gluon multiplicity analytically, by summing all orders (n) of perturbation theory:

$$\langle N_g
angle \sim \sum_n \frac{1}{(n!)^2} \left(\frac{C_A}{\pi b} \ln \frac{Q}{\Lambda} \right)^n$$

 $\sim \exp \sqrt{\frac{4C_A}{\pi b} \ln \frac{Q}{\Lambda}}$

Compare to data for hadron multiplicity $(Q \equiv \sqrt{s})$

Including some other higher-order terms and fitting overall normalisation

Agreement is amazing!

charged hadron multiplicity $\mbox{in } e^+e^- \mbox{ events} \\ \mbox{adapted from ESW}$

It's great that putting together all orders of gluon emission works so well!

This, together with a "hadronisation model", is part of what's contained in Monte Carlo event generators like Pythia, Herwig & Sherpa.

But are there things that we can calculate about the final state using just one or two orders perturbation theory?
For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if $\vec{p_i}$ is any momentum occurring in its definition, it must be invariant under the branching

 $ec{p_i}
ightarrow ec{p_j} + ec{p_k}$

whenever \vec{p}_j and \vec{p}_k are parallel [collinear] or one of them is small[infrared].[QCD and Collider Physics (Ellis, Stirling & Webber)]

Examples

QCD lecture 1 (p. 38)

Infrared and Collinear safety

 $e^+e^- \rightarrow a\bar{a}$

- Multiplicity of gluons is not IRC safe [modified by soft/collinear splitting]
- Energy of hardest particle is not IRC safe [modified by collinear splitting]
- Energy flow into a cone is IRC safe [soft emissions don't change energy flow collinear emissions don't change its direction]

For an observable's distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if $\vec{p_i}$ is any momentum occurring in its definition, it must be invariant under the branching

$$ec{p}_i o ec{p}_j + ec{p}_k$$

whenever \vec{p}_j and \vec{p}_k are parallel [collinear] or one of them is small [infrared]. [QCD and Collider Physics (Ellis, Stirling & Webber)]

Examples

QCD lecture 1 (p. 38)

Infrared and Collinear safety

 $e^+e^- \rightarrow a\bar{a}$

- Multiplicity of gluons is not IRC safe [modified by soft/collinear splitting]
- Energy of hardest particle is not IRC safe [modified by collinear splitting]
- Energy flow into a cone is IRC safe [soft emissions don't change energy flow collinear emissions don't change its direction]

QCD lecture 1 (p. 39) $\[e^+e^- \rightarrow q\bar{q} \]$ $\[Infrared and Collinear safety \]$

Sterman-Weinberg jets

The original (finite) jet definition

An event has 2 jets if at least a fraction $(1 - \epsilon)$ of event energy is contained in two cones of half-angle δ .

$$\sigma_{2-jet} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \frac{d\theta}{\sin\theta} \left(R\left(\frac{E}{Q},\theta\right) \times \left(1 - \Theta\left(\frac{E}{Q} - \epsilon\right)\Theta(\theta - \delta)\right) - V\left(\frac{E}{Q},\theta\right) \right) \right)$$

- For small E or small θ this is just like total cross section full cancellation of divergences between real and virtual terms.
- For large *E* and large θ a *finite piece* of real emission cross section is *cut out*.
- Overall final contribution dominated by scales ~ Q cross section is perturbatively calculation.

QCD lecture 1 (p. 39) $\[e^+e^- \rightarrow q\bar{q} \]$ $\[Infrared and Collinear safety \]$

Sterman-Weinberg jets

The original (finite) jet definition

An event has 2 jets if at least a fraction $(1 - \epsilon)$ of event energy is contained in two cones of half-angle δ .

$$\sigma_{2-jet} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \frac{d\theta}{\sin\theta} \left(R\left(\frac{E}{Q}, \theta\right) \times \left(1 - \Theta\left(\frac{E}{Q} - \epsilon\right)\Theta(\theta - \delta) \right) - V\left(\frac{E}{Q}, \theta\right) \right) \right)$$

- For small *E* or small *θ* this is just like total cross section full cancellation of divergences between real and virtual terms.
- For large E and large θ a finite piece of real emission cross section is cut out.
- Overall final contribution dominated by scales ~ Q cross section is perturbatively calculation.

QCD lecture 1 (p. 39) $\[e^+e^- \rightarrow q\bar{q} \]$ $\[Infrared and Collinear safety \]$

Sterman-Weinberg jets

The original (finite) jet definition

An event has 2 jets if at least a fraction $(1 - \epsilon)$ of event energy is contained in two cones of half-angle δ .

$$\sigma_{2-jet} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_{s}C_{F}}{\pi} \int \frac{dE}{E} \frac{d\theta}{\sin\theta} \left(R\left(\frac{E}{Q}, \theta\right) \times \left(1 - \Theta\left(\frac{E}{Q} - \epsilon\right)\Theta(\theta - \delta) \right) - V\left(\frac{E}{Q}, \theta\right) \right) \right)$$

- For small E or small θ this is just like total cross section full cancellation of divergences between real and virtual terms.
- For large E and large θ a *finite piece* of real emission cross section is *cut* out.
- Overall final contribution dominated by scales ~ Q cross section is perturbatively calculation.

Near 'perfect' 2-jet event

2 well-collimated jets of particles.

Nearly all energy contained in two cones.

Cross section for this to occur is

 $\sigma_{2-\text{jet}} = \sigma_{q\bar{q}}(1 - c_1\alpha_s + c_2\alpha_s^2 + \ldots)$

where c_1, c_2 all ~ 1 .

QCD lecture 1 (p. 41) $\[e^+e^- \rightarrow q\bar{q} \]$ $\[Infrared and Collinear safety \]$

How many jets?

- Most of energy contained in 3 (fairly) collimated cones
- Cross section for this to happen is

 $\sigma_{3-\text{jet}} = \sigma_{q\bar{q}}(c_1'\alpha_s + c_2'\alpha_s^2 + \ldots)$

where the coefficients are all $\mathcal{O}\left(1
ight)$

Cross section for extra gluon diverges Cross section for extra jet is small, $\mathcal{O}(\alpha_s)$

> NB: Sterman-Weinberg procedure gets complex for multi-jet events. 4th lecture will discuss modern approaches for defining jets.

- QCD at colliders mixes weak and strong coupling
- No calculation technique is rigorous over that whole domain
- Gluon emission repaints a quark's colour
- That implies that gluons carry colour too
- Quarks emit gluons, which emit other gluons: this gives characteristic "shower" structure of QCD events, and is the basis of *Monte Carlo simulations*
- To use perturbation theory one must measure quantities that insensitive to the (divergent) soft & collinear splittings, like *jets*.