QCD (for colliders)
Lecture 1: Introduction

Gavin Salam

CERN

At the Fourth Asia-Europe-Pacific School of High-Energy Physics
September 2018, Quy Nhon, Vietnam
QUANTUM CHROMODYNAMICS

The theory of quarks, gluons and their interactions

It’s central to all modern colliders.
(And QCD is what we’re made of)
What is QCD

The ingredients of QCD

- Quarks (and anti-quarks): they come in 3 colours
- Gluons: a bit like photons in QED

 But there are 8 of them, and they’re colour charged

- And a coupling, α_s, that’s not so small and runs fast

 At LHC, in the range $0.08(@ 5 \text{ TeV})$ to $O(1)(@ 0.5 \text{ GeV})$
I’ll try to give you a feel for:

How QCD works

How theorists handle QCD at high-energy colliders

How you can work with QCD at high-energy colliders
A proton–proton collision: INITIAL STATE

proton

proton
A proton–proton collision: FINAL STATE

(actual final-state multiplicity ~ several hundred hadrons)
3 Signal and background models

The ggF and VBF production modes for $H \rightarrow WW^*$ are modelled at next-to-leading order (NLO) in the strong coupling α_S with the Powheg MC generator [22–25], interfaced with Pythia8 [26] (version 8.165) for the parton shower, hadronisation, and underlying event. The CT10 [27] PDF set is used and the parameters of the Pythia8 generator controlling the modelling of the parton shower and the underlying event are those corresponding to the AU2 set [28]. The Higgs boson mass set in the generation is 125.0 GeV, which is close to the measured value. The Powheg ggF model takes into account finite quark masses and a running-width Breit–Wigner distribution that includes electroweak corrections at NLO [29]. To improve the modelling of the Higgs boson p_T distribution, a reweighting scheme is applied to reproduce the prediction of the next-to-next-to-leading-order (NNLO) and next-to-next-to-leading-logarithm (NNLL) dynamic-scale calculation given by the HRes 2.1 program [30]. Events with ≥ 2 jets are further reweighted to reproduce the p_T^H spectrum predicted by the NLO Powheg simulation of Higgs boson production in association with two jets ($H + 2$ jets) [31]. Interference with continuum WW production [32, 33] has a negligible impact on this analysis due to the transverse-mass selection criteria described in Section 4 and is not included in the signal model.

Jets are reconstructed from topological clusters of calorimeter cells [50–52] using the anti-k_t algorithm with a radius parameter of $R = 0.4$ [53]. Jet energies are corrected for the effects of calorimeter non-
That whole paragraph was just for the red part of this distribution (the Higgs signal).

Complexity of modelling each of the backgrounds is comparable.
What is QCD

Let’s write down QCD in full detail
(There’s a lot to absorb here — but it should become more palatable as we return to individual elements later)
What is QCD

Lagrangian + colour

Quarks — 3 colours: \(\psi_a = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \)

Quark part of Lagrangian:

\[
\mathcal{L}_q = \bar{\psi}_a (i \gamma^\mu \partial_\mu \delta_{ab} - g_s \gamma^\mu t_{ab}^C A_\mu^C - m) \psi_b
\]

SU(3) local gauge symmetry \(\leftrightarrow \) 8 \((= 3^2 - 1)\) generators \(t_{ab}^1 \ldots t_{ab}^8 \) corresponding to 8 gluons \(A_\mu^1 \ldots A_\mu^8 \).

A representation is: \(t^A = \frac{1}{2} \lambda^A \),

\[
\lambda^1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},
\]

\[
\lambda^5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda^6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \lambda^7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \lambda^8 = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}} \end{pmatrix},
\]
What is QCD

Lagrangian + colour

Quarks — 3 colours: \(\psi_a = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix} \)

Quark part of Lagrangian:

\[
\mathcal{L}_q = \bar{\psi}_a (i \gamma^\mu \partial_\mu \delta_{ab} - g_s \gamma^\mu t^C_{ab} A^C_\mu - m) \psi_b
\]

\(SU(3)\) local gauge symmetry \(\leftrightarrow 8\) (\(= 3^2 - 1\)) generators \(t^1_{ab} \ldots t^8_{ab}\)

A representation is: \(t^A = \frac{1}{2} \lambda^A\),

\[
\lambda^1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^2 = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda^4 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix},
\]

\[
\lambda^5 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix}, \quad \lambda^6 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \lambda^7 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \lambda^8 = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 \\ 0 & 0 & -\frac{2}{\sqrt{3}} \end{pmatrix}
\]
Lagrangian: gluonic part

Field tensor: \(F_{\mu\nu}^A = \partial_\mu A_\nu^A - \partial_\nu A_\mu^A - g_s f_{ABC} A_\mu^B A_\nu^C \quad [t^A, t^B] = i f_{ABC} t^C \)

\(f_{ABC} \) are structure constants of \(SU(3) \) (antisymmetric in all indices — \(SU(2) \) equivalent was \(\epsilon^{ABC} \)). Needed for gauge invariance of gluon part of Lagrangian:

\[
\mathcal{L}_G = -\frac{1}{4} F_{\mu\nu}^A F^{A\mu\nu}
\]
Field tensor: \(F_{\mu\nu}^A = \partial_\mu A_\nu^A - \partial_\nu A_\mu^A - g_s f_{ABC} A_\mu^B A_\nu^C \)

\(f_{ABC} \) are structure constants of SU(3) (antisymmetric in all indices — SU(2) equivalent was \(\epsilon^{ABC} \)). Needed for gauge invariance of gluon part of Lagrangian:

\[
\mathcal{L}_G = -\frac{1}{4} F_A^{\mu\nu} F_A^{\mu\nu}
\]
Two main approaches to solving it

- Numerical solution with discretized space time (lattice)
- Perturbation theory: assumption that coupling is small

Also: effective theories
Put all the quark and gluon fields of QCD on a 4D-lattice. **NB:** with imaginary time.

- Figure out which field configurations are most likely (by Monte Carlo sampling).
- You’ve solved QCD.
Lattice QCD is great at calculating static properties of a single hadron.

E.g. the hadron mass spectrum

Durr et al '08
How big a lattice do you need for an LHC collision @ 14 TeV?

Lattice spacing: \(\frac{1}{14 \text{ TeV}} \sim 10^{-5} \text{ fm} \)

Lattice extent:

- non-perturbative dynamics for quark/hadron near rest takes place on timescale \(\frac{1}{0.5 \text{ GeV}} \sim 0.4 \text{ fm/c} \)
- But quarks at LHC have effective boost factor \(\sim 10^4 \)
- So lattice extent should be \(\sim 4000 \text{ fm} \)

Total: need \(\sim 4 \times 10^8 \) lattice units in each direction, or \(3 \times 10^{34} \) nodes total.

Plus clever tricks to deal with high particle multiplicity, imaginary v. real time, etc.
Relies on idea of order-by-order expansion small coupling, $\alpha_s \ll 1$

$$\alpha_s + \alpha_s^2 + \alpha_s^3 + \ldots$$

small
smaller
negligible?

Interaction vertices of Feynman rules:

These expressions are fairly complex, so you really don’t want to have to deal with too many orders of them! i.e. α_s had better be small...
What do Feynman rules mean physically?

A gluon emission **repaints** the quark colour.
A gluon itself carries colour and anti-colour.
What does “ggg” Feynman rule mean?

\[-g_s f^{ABC} [(p - q)^\rho g^{\mu\nu} + (q - r)^\mu g^{\nu\rho} + (r - p)^\nu g^{\rho\mu}] \]

A gluon emission also repaints the gluon colours.

Because a gluon carries colour + anti-colour, it emits \(\sim \) twice as strongly as a quark (just has colour)
Quick guide to colour algebra

\[\text{Tr}(t^A t^B) = T_R \delta^{AB} , \quad T_R = \frac{1}{2} \]

\[\sum_A t^A t^A = C_F \delta_{ac} , \quad C_F = \frac{N_c^2 - 1}{2N_c} = \frac{4}{3} \]

\[\sum_{C,D} f^{ACD} f^{BCD} = C_A \delta^{AB} , \quad C_A = N_c = 3 \]

\[t^A t^A = \frac{1}{2} \delta_{bc} \delta_{ad} - \frac{1}{2N_c} \delta_{ab} \delta_{cd} \quad \text{(Fierz)} \]

\[N_c \equiv \text{number of colours} = 3 \text{ for QCD} \]
Basic methods

Perturbation theory

Quick guide to colour algebra

\[
\text{Tr}(t^A t^B) = T_R \delta^{AB} , \quad T_R = \frac{1}{2}
\]

\[
\sum_A t^A_{ab} t^A_{bc} = C_F \delta_{ac} , \quad C_F = \frac{N_c^2 - 1}{2N_c} = \frac{4}{3}
\]

\[
\sum_{C,D} f^{ACD} f^{BCD} = C_A \delta^{AB} , \quad C_A = N_c = 3
\]

\[
t^A_{ab} t^A_{cd} = \frac{1}{2} \delta_{bc} \delta_{ad} - \frac{1}{2N_c} \delta_{ab} \delta_{cd} \quad \text{(Fierz)}
\]

\[N_c \equiv \text{number of colours} = 3 \text{ for QCD}\]
Quick guide to colour algebra

\[\text{Tr}(t^A t^B) = T_R \delta^{AB}, \quad T_R = \frac{1}{2} \]

\[\sum_A t^A_{ab} t^A_{bc} = C_F \delta_{ac}, \quad C_F = \frac{N_c^2 - 1}{2N_c} = \frac{4}{3} \]

\[\sum_{C,D} f^{ACD} f^{BCD} = C_A \delta^{AB}, \quad C_A = N_c = 3 \]

\[t^A_{ab} t^A_{cd} = \frac{1}{2} \delta_{bc} \delta_{ad} - \frac{1}{2N_c} \delta_{ab} \delta_{cd} \text{ (Fierz)} \]

\[N_c \equiv \text{number of colours} = 3 \text{ for QCD} \]
Quick guide to colour algebra

\[\text{Tr}(t^A t^B) = T_R \delta^{AB} , \quad T_R = \frac{1}{2} \]

\[\sum_A t^A_{ab} t^A_{bc} = C_F \delta_{ac} , \quad C_F = \frac{N_c^2 - 1}{2N_c} = \frac{4}{3} \]

\[\sum_{C,D} f^{ACD} f^{BCD} = C_A \delta^{AB} , \quad C_A = N_c = 3 \]

\[t^A_{ab} t^A_{cd} = \frac{1}{2} \delta_{bc} \delta_{ad} - \frac{1}{2N_c} \delta_{ab} \delta_{cd} \text{ (Fierz)} \]

\[N_c \equiv \text{number of colours} = 3 \text{ for QCD} \]
All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale (Q^2) of your process.

The QCD coupling, $\alpha_s(Q^2)$, runs **fast**:

$$Q^2 \frac{\partial \alpha_s}{\partial Q^2} = \beta(\alpha_s), \quad \beta(\alpha_s) = -\alpha_s^2 (b_0 + b_1\alpha_s + b_2\alpha_s^2 + \ldots),$$

$$b_0 = \frac{11C_A - 2n_f}{12\pi}, \quad b_1 = \frac{17C_A^2 - 5C_A n_f - 3C_F n_f}{24\pi^2} = \frac{153 - 19n_f}{24\pi^2}$$

Note sign: **Asymptotic Freedom**, due to gluon to self-interaction

2004 Novel prize: Gross, Politzer & Wilczek

- At high scales Q, coupling becomes small
 - quarks and gluons are almost free, interactions are weak
- At low scales, coupling becomes strong
 - quarks and gluons interact strongly — confined into hadrons
 - Perturbation theory fails.
Basic methods

Perturbation theory

All couplings run (QED, QCD, EW), i.e. they depend on the momentum scale \((Q^2)\) of your process.

The QCD coupling, \(\alpha_s(Q^2)\), runs fast:

\[
Q^2 \frac{\partial \alpha_s}{\partial Q^2} = \beta(\alpha_s), \quad \beta(\alpha_s) = -\alpha_s^2 (b_0 + b_1 \alpha_s + b_2 \alpha_s^2 + \ldots),
\]

\[
b_0 = \frac{11 C_A - 2n_f}{12\pi}, \quad b_1 = \frac{17 C_A^2 - 5 C_A n_f - 3 C_F n_f}{24\pi^2} = \frac{153 - 19n_f}{24\pi^2}
\]

Note sign: Asymptotic Freedom, due to gluon to self-interaction

2004 Novel prize: Gross, Politzer & Wilczek

- **At high scales** \(Q\), coupling becomes small
 - quarks and gluons are almost free, interactions are weak

- **At low scales**, coupling becomes strong
 - quarks and gluons interact strongly — confined into hadrons
 - Perturbation theory fails.
Solve \(Q^2 \frac{\partial \alpha_s}{\partial Q^2} = -b_0 \alpha_s^2 \) \(\Rightarrow \) \(\alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + b_0 \alpha_s(Q_0^2) \ln \frac{Q^2}{Q_0^2}} = \frac{1}{b_0 \ln \frac{Q^2}{\Lambda^2}} \)

\(\Lambda \approx 0.2 \text{ GeV} \) (aka \(\Lambda_{QCD} \)) is the fundamental scale of QCD, at which coupling blows up.

- \(\Lambda \) sets the scale for hadron masses (NB: \(\Lambda \) not unambiguously defined wrt higher orders)

- Perturbative calculations valid for scales \(Q \gg \Lambda \).
Solve \(Q^2 \frac{\partial \alpha_s}{\partial Q^2} = -b_0 \alpha_s^2 \quad \Rightarrow \quad \alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + b_0 \alpha_s(Q_0^2) \ln \frac{Q^2}{Q_0^2}} = \frac{1}{b_0 \ln \frac{Q^2}{\Lambda^2}} \)

\(\Lambda \approx 0.2 \text{ GeV} \) (aka \(\Lambda_{QCD} \)) is the fundamental scale of QCD, at which coupling blows up.

- \(\Lambda \) sets the scale for hadron masses (NB: \(\Lambda \) not unambiguously defined wrt higher orders)

- Perturbative calculations valid for scales \(Q \gg \Lambda \).

\[Q^2 \frac{\partial \alpha_s}{\partial Q^2} = -b_0 \alpha_s^2 \quad \Rightarrow \quad \alpha_s(Q^2) = \frac{\alpha_s(Q_0^2)}{1 + b_0 \alpha_s(Q_0^2) \ln \frac{Q^2}{Q_0^2}} = \frac{1}{b_0 \ln \frac{Q^2}{\Lambda^2}} \]
Most consistent set of independent determinations is from lattice

Three best determinations are from lattice QCD (HPQCD, 1004.4285, 1408.4169, ALPHA 1706.03821)
\[\alpha_s(M_Z) = 0.1183 \pm 0.0007 \ (0.6\%) \] [heavy-quark correlators]
\[\alpha_s(M_Z) = 0.1183 \pm 0.0007 \ (0.6\%) \] [Wilson loops]
\[\alpha_s(M_Z) = 0.1185 \pm 0.0008 \ (0.7\%) \] [Schrodinger Functional]

Many determinations quote small uncertainties \((\lesssim 1\%)\). All are disputed!

Some determinations quote anomalously small central values \((\sim 0.113 \text{ v. world avg. of } 0.1181 \pm 0.0011)\). Also disputed
QCD perturbation theory (PT) & LHC?

- Higgs, SM and searches at colliders probe scales $Q \sim p_t \sim 50 \text{ GeV} - 5 \text{ TeV}$
 The coupling certainly is small there!

- But we’re colliding protons, $m_p \simeq 0.94 \text{ GeV}$
 The coupling is large!

When we look at QCD events (this one is interpreted as $e^+e^- \to Z \to q\bar{q}$), we see:

- hadrons (PT doesn’t hold for them)

- lots of them — so we can’t say 1 quark/gluon ~ 1 hadron, and we limit ourselves to 1 or 2 orders of PT.
QCD perturbation theory (PT) & LHC?

- Higgs, SM and searches at colliders probe scales $Q \sim p_t \sim 50$ GeV $-$ 5 TeV

 The coupling certainly is small there!

- But we’re colliding protons, $m_p \simeq 0.94$ GeV

 The coupling is large!

When we look at QCD events (this one is interpreted as $e^+e^- \rightarrow Z \rightarrow q\bar{q}$), we see:

- hadrons (PT doesn’t hold for them)

- lots of them — so we can’t say 1 quark/gluon ~ 1 hadron, and we limit ourselves to 1 or 2 orders of PT.
Neither lattice QCD nor perturbative QCD can offer a full solution to using QCD at colliders.

What the community has settled on is perturbative QCD inputs + non-perturbative modelling/factorisation.

Rest of this lecture: take a simple environment \((e^+e^- \rightarrow \text{hadrons})\) and see how PT allows us to understand why QCD events look the way they do.

Next lectures: dealing with incoming protons, jets, modern predictive tools.
Start with $\gamma^* \rightarrow q\bar{q}$:

$$\mathcal{M}_{q\bar{q}} = -\bar{u}(p_1)ie_q\gamma_\mu \nu(p_2)$$

Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1)ig_s\epsilon/\!\!/t^A \frac{i}{p'_1 + k} ie_q\gamma_\mu \nu(p_2)$$

$$-\bar{u}(p_1)ie_q\gamma_\mu \frac{i}{p'_2 + k} ig_s\epsilon/\!\!/t^A \nu(p_2)$$

Make gluon soft $\equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$\mathcal{M}_{q\bar{q}g} \simeq \bar{u}(p_1)ie_q\gamma_\mu t^A \nu(p_2) g_s \left(\frac{p_1.\epsilon}{p_1.k} - \frac{p_2.\epsilon}{p_2.k} \right)$$

$p'\nu(p) = 0, p'k + k\nu = 2p.k$
Start with $\gamma^* \rightarrow q\bar{q}$:

$$\mathcal{M}_{q\bar{q}} = -\bar{u}(p_1)ie_q\gamma_\mu v(p_2)$$

Emit a gluon:

$$\mathcal{M}_{q\bar{q}g} = \bar{u}(p_1)i g_s/\epsilon A_i p_1/k + i e_q\gamma_\mu v(p_2)$$

Make gluon soft $\equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$\mathcal{M}_{q\bar{q}g} \simeq \bar{u}(p_1)ie_q\gamma_\mu t^A v(p_2) g_s \left(\frac{p_1.\epsilon}{p_1.k} - \frac{p_2.\epsilon}{p_2.k} \right)$$

$p.v(p) = 0, p'k + k p' = 2p.k$
Start with $\gamma^* \rightarrow q\bar{q}$:

$$\bar{u}(p_1)ig_{\gamma}t^A \frac{i}{p'_1 + k}ie_q\gamma_{\mu}\nu(p_2) = -ig_{\gamma}\bar{u}(p_1)\frac{p'_1 + k}{(p_1 + k)^2}e_q\gamma_{\mu}t^A\nu(p_2)$$

Use $AB = 2A.B - B.A$:

$$= -ig_{\gamma}\bar{u}(p_1)[2\epsilon.(p_1 + k) - (p'_1 + k)\epsilon]\frac{1}{(p_1 + k)^2}e_q\gamma_{\mu}t^A\nu(p_2)$$

Use $\bar{u}(p_1)p'_1 = 0$ and $k \ll p_1$ (p_1, k massless)

$$\simeq -ig_{\gamma}\bar{u}(p_1)[2\epsilon.p_1]\frac{1}{(p_1 + k)^2}e_q\gamma_{\mu}t^A\nu(p_2)$$

$$= -ig_{\gamma}\frac{p_1.\epsilon}{p_1.k}\bar{u}(p_1)e_q\gamma_{\mu}t^A\nu(p_2)$$

pure QED spinor structure
Start with $\gamma^* \rightarrow q\bar{q}$:

$$M_{q\bar{q}} = -\bar{u}(p_1)i\epsilon_q\gamma_\mu \nu(p_2)$$

Emit a gluon:

$$M_{q\bar{q}g} = \bar{u}(p_1)i\epsilon_g\gamma_\mu t^A \frac{i}{p_1 + k} i\epsilon_q\gamma_\mu \nu(p_2) - \bar{u}(p_1)i\epsilon_q\gamma_\mu \frac{i}{p_2 + k} i\epsilon_g\gamma_\mu t^A \nu(p_2)$$

Make gluon soft $\equiv k \ll p_{1,2}$; ignore terms suppressed by powers of k:

$$M_{q\bar{q}g} \simeq \bar{u}(p_1)i\epsilon_q\gamma_\mu t^A \nu(p_2) g_s \left(\frac{p_1 \cdot \epsilon}{p_1 \cdot k} - \frac{p_2 \cdot \epsilon}{p_2 \cdot k} \right)$$

$p \cdot \nu(p) = 0,$

$p / k + k / p = 2p \cdot k$
$|M_{q\bar{q}g}^2| \simeq \sum_{A,\text{pol}} |\bar{u}(p_1) i e q \gamma_\mu t^A v(p_2) g_s \left(\frac{p_1.\epsilon}{p_1.k} - \frac{p_2.\epsilon}{p_2.k} \right)|^2$

$= -|M_{q\bar{q}}^2| C_F g_s^2 \left(\frac{p_1}{p_1.k} - \frac{p_2}{p_2.k} \right)^2 = |M_{q\bar{q}}^2| C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)}$

Include phase space:

$d\Phi_{q\bar{q}g} |M_{q\bar{q}g}^2| \simeq (d\Phi_{q\bar{q}} |M_{q\bar{q}}^2|) \frac{d^3k}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)}$

Note property of factorisation into hard $q\bar{q}$ piece and soft-gluon emission piece, dS.

$dS = EdE d\cos \theta \frac{d\phi}{2\pi} \frac{2\alpha_s C_F}{\pi} \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} \theta \equiv \theta_{p_1.k}$

$\phi = \text{azimuth}$
QCD lecture 1 (p. 25)
e^+ e^- \rightarrow q\bar{q}

Squared amplitude

\[|M_{q\bar{q}g}^2| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_1) i e_q \gamma_\mu t^A v(p_2) g_s \left(\frac{p_1.\epsilon}{p_1.k} - \frac{p_2.\epsilon}{p_2.k} \right) \right|^2 \]

\[= -|M_{q\bar{q}}^2| C_F g_s^2 \left(\frac{p_1}{p_1.k} - \frac{p_2}{p_2.k} \right)^2 = |M_{q\bar{q}}^2| C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)} \]

Include phase space:

\[d\Phi_{q\bar{q}g} |M_{q\bar{q}g}^2| \simeq (d\Phi_{q\bar{q}} |M_{q\bar{q}}^2|) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)} \]

Note property of factorisation into hard \(q\bar{q}\) piece and soft-gluon emission piece, \(dS\).

\[dS = EdE d\cos \theta \frac{d\phi}{2\pi} \frac{2\alpha_s C_F}{\pi} \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} \]

\[\theta \equiv \theta_{p_1.k} \]

\[\phi = \text{azimuth} \]
\[|M_{q\bar{q}g}^2| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_1) i e_q \gamma_\mu t^A v(p_2) g_s \left(\frac{p_1.\epsilon}{p_1.k} - \frac{p_2.\epsilon}{p_2.k} \right) \right|^2 \]

\[= -|M_{q\bar{q}}^2| C_F g_s^2 \left(\frac{p_1}{p_1.k} - \frac{p_2}{p_2.k} \right)^2 = |M_{q\bar{q}}^2| C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)} \]

Include phase space:

\[d\Phi_{q\bar{q}g} |M_{q\bar{q}g}^2| \simeq (d\Phi_{q\bar{q}}|M_{q\bar{q}}^2|) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)} \]

Note property of factorisation into hard \(q\bar{q} \) piece and soft-gluon emission piece, \(dS \).

\[dS = EdE d\cos \theta \frac{d\phi}{2\pi} \frac{2\alpha_s C_F}{\pi} \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} \]

\[\theta \equiv \theta_{p_1 k} \]

\[\phi = \text{azimuth} \]
\[|M_{q\bar{q}g}^2| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_1) ie_q \gamma_\mu t^A v(p_2) g_s \left(\frac{p_1.\epsilon}{p_1.k} - \frac{p_2.\epsilon}{p_2.k} \right) \right|^2 \]

\[= -|M_{q\bar{q}}^2| C_F g_s^2 \left(\frac{p_1}{p_1.k} - \frac{p_2}{p_2.k} \right)^2 = |M_{q\bar{q}}^2| C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)} \]

Include phase space:

\[d\Phi_{q\bar{q}g} |M_{q\bar{q}g}^2| \simeq (d\Phi_{q\bar{q}} |M_{q\bar{q}}^2|) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)} \]

Note property of factorisation into hard \(q\bar{q} \) piece and soft-gluon emission piece, \(dS \).

\[dS = EdE d\cos \theta \frac{d\phi}{2\pi} \cdot \frac{2\alpha_s C_F}{\pi} \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} \]

\[\theta \equiv \theta_{p_1k} \]

\[\phi = \text{azimuth} \]
\[|M_{q\bar{q}g}^2| \simeq \sum_{A,\text{pol}} \left| \bar{u}(p_1) i e_q \gamma_\mu t^A \nu(p_2) g_s \left(\frac{p_1.\epsilon}{p_1.k} - \frac{p_2.\epsilon}{p_2.k} \right) \right|^2 \]

\[= - |M_{q\bar{q}}^2| C_F g_s^2 \left(\frac{p_1}{p_1.k} - \frac{p_2}{p_2.k} \right)^2 = |M_{q\bar{q}}^2| C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)} \]

Include phase space:

\[d\Phi_{q\bar{q}g} |M_{q\bar{q}g}^2| \simeq (d\Phi_{q\bar{q}} |M_{q\bar{q}}^2|) \frac{d^3\vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)} \]

Note property of factorisation into hard \(q\bar{q} \) piece and soft-gluon emission piece, \(dS \).

\[dS = EdE \ d\cos \theta \ rac{d\phi}{2\pi} \cdot \frac{2\alpha_s C_F}{\pi} \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} \]

\[\theta \equiv \theta_{p_1k} \]

\[\phi = \text{azimuth} \]
\[|M_{q\bar{q}g}^2| \approx \sum_{A,\text{pol}} \left| \bar{u}(p_1) i e q \gamma_\mu t^A v(p_2) g_s \left(\frac{p_1.\epsilon}{p_1.k} - \frac{p_2.\epsilon}{p_2.k} \right) \right|^2 \]

\[= - |M_{q\bar{q}}^2| C_F g_s^2 \left(\frac{p_1}{p_1.k} - \frac{p_2}{p_2.k} \right)^2 = |M_{q\bar{q}}^2| C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)} \]

Include phase space:

\[d\Phi_{q\bar{q}g} |M_{q\bar{q}g}^2| \approx (d\Phi_{q\bar{q}} |M_{q\bar{q}}^2|) \frac{d^3 \vec{k}}{2E(2\pi)^3} C_F g_s^2 \frac{2p_1.p_2}{(p_1.k)(p_2.k)} \]

Note property of factorisation into hard \(q\bar{q} \) piece and soft-gluon emission piece, \(dS \).

\[
\begin{align*}
 dS &= EdE \ d\cos \theta \ \frac{d\phi}{2\pi} \cdot \frac{2\alpha_s C_F}{\pi} \ \frac{2p_1.p_2}{(2p_1.k)(2p_2.k)}

 \theta &\equiv \theta_{p_1k} \\
 \phi &= \text{azimuth}
\end{align*}
\]
Soft & collinear gluon emission

Take squared matrix element and rewrite in terms of E, θ,

\[
\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1 - \cos^2 \theta)}
\]

So final expression for soft gluon emission is

\[
dS = \frac{2\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin \theta} \frac{d\phi}{2\pi}
\]

NB:

- It *diverges* for $E \to 0$ — *infrared (or soft) divergence*
- It *diverges* for $\theta \to 0$ and $\theta \to \pi$ — *collinear divergence*

Soft, collinear divergences derived here in specific context of $e^+e^- \to q\bar{q}$ But they are a very general property of QCD
Soft & collinear gluon emission

Take squared matrix element and rewrite in terms of E, θ,

\[
\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1 - \cos^2 \theta)}
\]

So final expression for soft gluon emission is

\[
dS = \frac{2\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin \theta} \frac{d\phi}{2\pi}
\]

NB:
- It diverges for $E \to 0$ — infrared (or soft) divergence
- It diverges for $\theta \to 0$ and $\theta \to \pi$ — collinear divergence

Soft, collinear divergences derived here in specific context of $e^+e^- \to q\bar{q}$

But they are a very general property of QCD
Take squared matrix element and rewrite in terms of E, θ,

\[
\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1 - \cos^2 \theta)}
\]

So final expression for soft gluon emission is

\[
dS = \frac{2\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin \theta} \frac{d\phi}{2\pi}
\]

NB:

- It *diverges* for $E \to 0$ — *infrared (or soft) divergence*
- It *diverges* for $\theta \to 0$ and $\theta \to \pi$ — *collinear divergence*

Soft, collinear divergences derived here in specific context of $e^+e^- \to q\bar{q}$

But they are a very general property of QCD
Take squared matrix element and rewrite in terms of E, θ,

$$\frac{2p_1.p_2}{(2p_1.k)(2p_2.k)} = \frac{1}{E^2(1 - \cos^2 \theta)}$$

So final expression for soft gluon emission is

$$dS = \frac{2\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\sin \theta} \frac{d\phi}{2\pi}$$

NB:
- It diverges for $E \to 0$ — infrared (or soft) divergence
- It diverges for $\theta \to 0$ and $\theta \to \pi$ — collinear divergence

Soft, collinear divergences derived here in specific context of $e^+e^- \to q\bar{q}$

But they are a very general property of QCD
Total cross section: sum of all real and virtual diagrams

\[\sigma_{\text{tot}} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} R(E/Q, \theta) \right) \]

- \[R(E/Q, \theta) \] parametrizes real matrix element for hard emissions, \(E \sim Q \).
- \[V(E/Q, \theta) \] parametrizes virtual corrections for all momenta.
Total cross section: sum of all real and virtual diagrams

\[
\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} R(E/Q, \theta) \right) + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} V(E/Q, \theta)
\]

Total cross section must be \textit{finite}. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)

- \(R(E/Q, \theta)\) parametrises real matrix element for hard emissions, \(E \sim Q\).
- \(V(E/Q, \theta)\) parametrises virtual corrections for all momenta.
Real-virtual cancellations: total X-sctn

Total cross section: sum of all real and virtual diagrams

\[\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} R(E/Q, \theta) \right) \]

\[- \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} V(E/Q, \theta) \]

- \(R(E/Q, \theta) \) parametrises real matrix element for hard emissions, \(E \sim Q \).
- \(V(E/Q, \theta) \) parametrises virtual corrections for all momenta.

Total cross section must be \textit{finite}. If real part has divergent integration, so must virtual part. (Unitarity, conservation of probability)
\[\sigma_{\text{tot}} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} (R(E/Q, \theta) - V(E/Q, \theta)) \right) \]

- From calculation: \(\lim_{E \to 0} R(E/Q, \theta) = 1 \).
- For every divergence \(R(E/Q, \theta) \) and \(V(E/Q, \theta) \) should cancel:
 \[\lim_{E \to 0} (R - V) = 0 \,, \quad \lim_{\theta \to 0, \pi} (R - V) = 0 \]

Result:
- corrections to \(\sigma_{\text{tot}} \) come from hard \((E \sim Q) \), large-angle gluons
- Soft gluons don’t matter:

- Correct renorm. scale for \(\alpha_s, \mu \sim Q \) — perturbation theory valid.
\[
\sigma_{\text{tot}} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} \left(R \left(\frac{E}{Q}, \theta \right) - V \left(\frac{E}{Q}, \theta \right) \right) \right)
\]

- From calculation: \(\lim_{E \to 0} R \left(\frac{E}{Q}, \theta \right) = 1 \).
- For every divergence \(R \left(\frac{E}{Q}, \theta \right) \) and \(V \left(\frac{E}{Q}, \theta \right) \) should cancel:
 \[
 \lim_{E \to 0} (R - V) = 0, \quad \lim_{\theta \to 0, \pi} (R - V) = 0
 \]

Result:

- corrections to \(\sigma_{\text{tot}} \) come from hard \((E \sim Q) \), large-angle gluons
- Soft gluons don’t matter:
 - Physics reason: soft gluons emitted on long timescale \(\sim 1/(E\theta^2) \) relative to collision \((1/Q) \) — cannot influence cross section.
 - Transition to hadrons also occurs on long time scale \((\sim 1/\Lambda) \) — and can also be ignored.
- Correct renorm. scale for \(\alpha_s \): \(\mu \sim Q \) — perturbation theory valid.
\[\sigma_{\text{tot}} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} \left(R(E/Q, \theta) - V(E/Q, \theta) \right) \right) \]

- From calculation: \(\lim_{E \to 0} R(E/Q, \theta) = 1 \).
- For every divergence \(R(E/Q, \theta) \) and \(V(E/Q, \theta) \) should cancel:
 \[\lim_{E \to 0} (R - V) = 0, \quad \lim_{\theta \to 0, \pi} (R - V) = 0 \]

Result:
- Corrections to \(\sigma_{\text{tot}} \) come from hard \((E \sim Q) \), large-angle gluons
- Soft gluons don’t matter:
 - Physics reason: soft gluons emitted on long timescale \(\sim 1/(E\theta^2) \) relative to collision \((1/Q) \) — cannot influence cross section.
 - Transition to hadrons also occurs on long time scale \(\sim 1/\Lambda \) — and can also be ignored.
- Correct renorm. scale for \(\alpha_s \): \(\mu \sim Q \) — perturbation theory valid.
\[\sigma_{\text{tot}} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} (R(E/Q, \theta) - V(E/Q, \theta)) \right) \]

- From calculation: \(\lim_{E \to 0} R(E/Q, \theta) = 1 \).
- For every divergence \(R(E/Q, \theta) \) and \(V(E/Q, \theta) \) should cancel:
 \[
 \lim_{E \to 0} (R - V) = 0, \quad \lim_{\theta \to 0, \pi} (R - V) = 0
 \]

Result:
- Corrections to \(\sigma_{\text{tot}} \) come from hard \((E \sim Q) \), large-angle gluons
- Soft gluons don’t matter:
 - Physics reason: soft gluons emitted on long timescale \(\sim 1/(E\theta^2) \) relative to collision \((1/Q) \) — cannot influence cross section.
 - Transition to hadrons also occurs on long time scale \(\sim 1/\Lambda \) — and can also be ignored.
- Correct renorm. scale for \(\alpha_s \): \(\mu \sim Q \) — perturbation theory valid.
\[\sigma_{\text{tot}} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} (R(E/Q, \theta) - V(E/Q, \theta)) \right) \]

- From calculation: \(\lim_{E \to 0} R(E/Q, \theta) = 1 \).
- For every divergence \(R(E/Q, \theta) \) and \(V(E/Q, \theta) \) should cancel:
 \[\lim_{E \to 0} (R - V) = 0, \quad \lim_{\theta \to 0, \pi} (R - V) = 0 \]

Result:
- corrections to \(\sigma_{\text{tot}} \) come from hard \((E \sim Q) \), large-angle gluons
- Soft gluons don’t matter:
 - Physics reason: soft gluons emitted on long timescale \(\sim 1/(E\theta^2) \) relative to collision \((1/Q) \) — cannot influence cross section.
 - Transition to hadrons also occurs on long time scale \(\sim 1/\Lambda \) — and can also be ignored.
- Correct renorm. scale for \(\alpha_s \): \(\mu \sim Q \) — perturbation theory valid.
\[
\sigma_{\text{tot}} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \int \frac{d\theta}{\sin \theta} (R(E/Q, \theta) - V(E/Q, \theta)) \right)
\]

- From calculation: \(\lim_{E \to 0} R(E/Q, \theta) = 1\).
- For every divergence \(R(E/Q, \theta)\) and \(V(E/Q, \theta)\) should cancel:
 \[
 \lim_{E \to 0} (R - V) = 0, \quad \lim_{\theta \to 0, \pi} (R - V) = 0
 \]

Result:

- corrections to \(\sigma_{\text{tot}}\) come from hard \((E \sim Q)\), large-angle gluons
- Soft gluons don’t matter:
 - Physics reason: soft gluons emitted on long timescale \(\sim 1/(E\theta^2)\) relative to collision \((1/Q)\) — cannot influence cross section.
 - Transition to hadrons also occurs on long time scale \((\sim 1/\Lambda)\) — and can also be ignored.
- Correct renorm. scale for \(\alpha_s\): \(\mu \sim Q\) — perturbation theory valid.
Dependence of total cross section on only hard gluons is reflected in ‘good behaviour’ of perturbation series:

\[
\sigma_{tot} = \sigma_{q\bar{q}} \left(1 + 1.045 \frac{\alpha_s(Q)}{\pi} + 0.94 \left(\frac{\alpha_s(Q)}{\pi} \right)^2 - 15 \left(\frac{\alpha_s(Q)}{\pi} \right)^3 + \cdots \right)
\]

(Coefficients given for \(Q = M_Z \))
Let’s look at more “exclusive” quantities — structure of final state
Naive gluon multiplicity

Let's try and integrate emission probability to get the mean number of gluons emitted off a quark with energy $\sim Q$:

$$\langle N_g \rangle \approx \frac{2\alpha_s C_F}{\pi} \int_Q^\infty \frac{dE}{E} \int_{\pi/2}^{\pi} \frac{d\theta}{\theta}$$

This diverges unless we cut the integral off for transverse momenta ($k_t \approx E\theta$) below some non-perturbative threshold, $Q_0 \sim \Lambda_{QCD}$.

On the grounds that perturbation no longer applies for $k_t \sim \Lambda_{QCD}$, the language of quarks and gluons becomes meaningless.

With this cutoff, result is:

$$\langle N_g \rangle \approx \frac{\alpha_s C_F}{\pi} \ln^2 \frac{Q}{Q_0} + O(\alpha_s \ln Q)$$
Let's try and integrate emission probability to get the mean number of gluons emitted off a quark with energy $\sim Q$:

$$\langle N_g \rangle \sim \frac{2\alpha_s C_F}{\pi} \int^{Q} \frac{dE}{E} \int^{\pi/2} \frac{d\theta}{\theta} \Theta(E\theta > Q_0)$$

This diverges unless we cut the integral off for transverse momenta $(k_t \sim E\theta)$ below some non-perturbative threshold, $Q_0 \sim \Lambda_{QCD}$.

On the grounds that perturbation no longer applies for $k_t \sim \Lambda_{QCD}$

Language of quarks and gluons becomes meaningless

With this cutoff, result is:

$$\langle N_g \rangle \sim \frac{\alpha_s C_F}{\pi} \ln^2 \frac{Q}{Q_0} + \mathcal{O} (\alpha_s \ln Q)$$
Suppose we take $Q_0 = \Lambda_{QCD}$, how big is the result?

Let’s use $\alpha_s = \alpha_s(Q) = 1/(2b \ln Q/\Lambda)$

[Actually, over most of integration range this is optimistically small]

$$\langle N_g \rangle \sim \frac{\alpha_s C_F}{\pi} \ln^2 \frac{Q}{\Lambda_{QCD}} \rightarrow \frac{C_F}{2b\pi} \ln \frac{Q}{\Lambda_{QCD}}$$

NB: given form for α_s, this is actually $\sim 1/\alpha_s$

Put in some numbers: $Q = 100$ GeV, $\Lambda_{QCD} \sim 0.2$ GeV, $C_F = 4/3$, $b \sim 0.6$,

$$\rightarrow \langle N_g \rangle \sim 2.2$$

Perturbation theory assumes that first-order term, $\sim \alpha_s$ should be $\ll 1$.

But the final result is $\sim 1/\alpha_s > 1$...

Is perturbation theory completely useless?
Suppose we take $Q_0 = \Lambda_{QCD}$, how big is the result?

Let’s use $\alpha_s = \alpha_s(Q) = 1/(2b \ln Q/\Lambda)$

[Actually, over most of integration range this is optimistically small]

$$\langle N_g \rangle \sim \frac{\alpha_s C_F}{\pi} \ln^2 \frac{Q}{\Lambda_{QCD}} \rightarrow \frac{C_F}{2b\pi} \ln \frac{Q}{\Lambda_{QCD}}$$

NB: given form for α_s, this is actually $\sim 1/\alpha_s$

Put in some numbers: $Q = 100$ GeV, $\Lambda_{QCD} \sim 0.2$ GeV, $C_F = 4/3$, $b \sim 0.6$,

$$\rightarrow \langle N_g \rangle \sim 2.2$$

Perturbation theory assumes that first-order term, $\sim \alpha_s$ should be $\ll 1$.

But the final result is $\sim 1/\alpha_s > 1$…

Is perturbation theory completely useless?
Given this failure of first-order perturbation theory, two possible avenues.

1. Continue calculating the next order(s) and see what happens

2. Try to see if there exist other observables for which perturbation theory is better behaved
How many gluons are emitted?

Gluon emission from quark:
\[
\frac{2\alpha_s C_F}{\pi} \frac{dE}{E} \frac{d\theta}{\theta}
\]

Gluon emission from gluon:
\[
\frac{2\alpha_s C_A}{\pi} \frac{dE}{E} \frac{d\theta}{\theta}
\]

Both expressions valid only if \(\theta \ll 1 \) and energy soft relative to parent.

- Same divergence structures, regardless of where gluon is emitted from.
- All that changes is the colour factor \((C_F = 4/3 \text{ v. } C_A = 3)\).
- Expect low-order structure \((\alpha_s \ln^2 Q)\) to be replicated at each new order.
$e^+e^- \rightarrow q\bar{q}$

How many gluons are emitted?

Start of with $q\bar{q}$
\(e^+ e^- \rightarrow q\bar{q} \)

How many gluons are emitted?

A gluon gets emitted at small angles
Picturing a QCD event

\[e^+ e^- \rightarrow q\bar{q} \]

How many gluons are emitted?

It radiates a further gluon
$e^+e^- \rightarrow q\bar{q}$

How many gluons are emitted?

And so forth
$e^+ e^- \rightarrow q\bar{q}$

- How many gluons are emitted?

Meanwhile the same happened on other side of event
$e^+ e^- \rightarrow q\bar{q}$

How many gluons are emitted?

And then a non-perturbative transition occurs.
How many gluons are emitted?

Giving a pattern of hadrons that “remembers” the gluon branching.

Hadrons mostly produced at small angle wrt $q\bar{q}$ directions or with low energy.
QCD lecture 1 (p. 36)
\[e^+ e^- \rightarrow q\bar{q} \]

How many gluons are emitted?

It turns out you can calculate the gluon multiplicity analytically, by summing all orders \(n \) of perturbation theory:

\[
\langle N_g \rangle \sim \sum_n \frac{1}{(n!)^2} \left(\frac{C_A}{\pi b} \ln \frac{Q}{\Lambda} \right)^n
\]

\[
\sim \exp \sqrt{\frac{4C_A}{\pi b} \ln \frac{Q}{\Lambda}}
\]

Compare to data for **hadron** multiplicity \((Q \equiv \sqrt{s})\)

Including some other higher-order terms and fitting overall normalisation

Agreement is amazing!

![Gluon v. hadron multiplicity](chart.png)

charged hadron multiplicity in \(e^+ e^- \) events
adapted from ESW
It’s great that putting together all orders of gluon emission works so well!

This, together with a “hadronisation model”, is part of what’s contained in Monte Carlo event generators like Pythia, Herwig & Sherpa.

But are there things that we can calculate about the final state using just one or two orders perturbation theory?
Infrared and Collinear Safety (definition)

For an observable’s distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if \vec{p}_i is any momentum occurring in its definition, it must be invariant under the branching

$$\vec{p}_i \rightarrow \vec{p}_j + \vec{p}_k$$

whenever \vec{p}_j and \vec{p}_k are parallel [collinear] or one of them is small [infrared].

[QCD and Collider Physics (Ellis, Stirling & Webber)]

Examples

- Multiplicity of gluons is not IRC safe [modified by soft/collinear splitting]
- Energy of hardest particle is not IRC safe [modified by collinear splitting]
- Energy flow into a cone is IRC safe [soft emissions don’t change energy flow, collinear emissions don’t change its direction]
For an observable’s distribution to be calculable in [fixed-order] perturbation theory, the observable should be infra-red safe, i.e. insensitive to the emission of soft or collinear gluons. In particular if \vec{p}_i is any momentum occurring in its definition, it must be invariant under the branching

$$\vec{p}_i \rightarrow \vec{p}_j + \vec{p}_k$$

whenever \vec{p}_j and \vec{p}_k are parallel [collinear] or one of them is small [infrared].

[QCD and Collider Physics (Ellis, Stirling & Webber)]

Examples

- Multiplicity of gluons is not IRC safe [modified by soft/collinear splitting]
- Energy of hardest particle is not IRC safe [modified by collinear splitting]
- Energy flow into a cone is IRC safe [soft emissions don’t change energy flow, collinear emissions don’t change its direction]
The original (finite) jet definition

An event has 2 jets if at least a fraction \((1 - \epsilon)\) of event energy is contained in two cones of half-angle \(\delta\).

\[
\sigma_{2\text{-jet}} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \frac{d\theta}{\sin \theta} \left(R \left(\frac{E}{Q}, \theta\right) \times \right.
ight.
\]
\[
\left.\left.1 - \Theta \left(\frac{E}{Q} - \epsilon\right) \Theta(\theta - \delta)\right) - V \left(\frac{E}{Q}, \theta\right)\right)\right)
\]

- For small \(E\) or small \(\theta\) this is just like total cross section — full cancellation of divergences between real and virtual terms.
- For large \(E\) and large \(\theta\) a finite piece of real emission cross section is cut out.
- Overall final contribution dominated by scales \(\sim Q\) — cross section is perturbatively calculation.
The *original* (finite) jet definition

An event has 2 jets if at least a fraction \((1 - \epsilon)\) of event energy is contained in two cones of half-angle \(\delta\).

\[
\sigma_{2\text{-jet}} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \frac{d\theta}{\sin \theta} \left(R \left(\frac{E}{Q}, \theta \right) \times \right. \right.
\]
\[
\left. \times \left(1 - \Theta \left(\frac{E}{Q} - \epsilon \right) \Theta(\theta - \delta) \right) - V \left(\frac{E}{Q}, \theta \right) \right) \right)
\]

- For small \(E\) or small \(\theta\) this is just like total cross section — full cancellation of divergences between real and virtual terms.
- For large \(E\) and large \(\theta\) a *finite piece* of real emission cross section is *cut out*.
- Overall final contribution dominated by scales \(\sim Q\) — cross section is perturbatively calculation.
The original (finite) jet definition

An event has 2 jets if at least a fraction \((1 - \epsilon)\) of event energy is contained in two cones of half-angle \(\delta\).

\[
\sigma_{2\text{-jet}} = \sigma_{q\bar{q}} \left(1 + \frac{2\alpha_s C_F}{\pi} \int \frac{dE}{E} \frac{d\theta}{\sin \theta} \left(R \left(\frac{E}{Q}, \theta\right) \times \left(1 - \Theta \left(\frac{E}{Q} - \epsilon\right) \Theta(\theta - \delta)\right) - V \left(\frac{E}{Q}, \theta\right)\right)\right)
\]

- For small \(E\) or small \(\theta\) this is just like total cross section — full cancellation of divergences between real and virtual terms.
- For large \(E\) and large \(\theta\) a finite piece of real emission cross section is cut out.
- Overall final contribution dominated by scales \(\sim Q\) — cross section is perturbatively calculation.
Near ‘perfect’ 2-jet event

2 well-collimated jets of particles.

Nearly all energy contained in two cones.

Cross section for this to occur is

$$\sigma_{2-\text{jet}} = \sigma_{q\bar{q}}(1 - c_1 \alpha_s + c_2 \alpha_s^2 + \ldots)$$

where \(c_1, c_2\) all \(\sim 1\).
Infrared and Collinear safety

3-jet event

How many jets?

- Most of energy contained in 3 (fairly) collimated cones
- Cross section for this to happen is
 \[\sigma_{3\text{-jet}} = \sigma_{q\bar{q}}(c_1' \alpha_s + c_2' \alpha_s^2 + \ldots) \]
 where the coefficients are all \(O(1) \)

Cross section for extra gluon diverges
Cross section for extra jet is small, \(O(\alpha_s) \)

NB: Sterman-Weinberg procedure gets complex for multi-jet events. 4th lecture will discuss modern approaches for defining jets.
QCD at colliders mixes weak and strong coupling

No calculation technique is rigorous over that whole domain

Gluon emission repaints a quark’s colour

That implies that gluons carry colour too

Quarks emit gluons, which emit other gluons: this gives characteristic “shower” structure of QCD events, and is the basis of *Monte Carlo simulations*

To use perturbation theory one must measure quantities that insensitive to the (divergent) soft & collinear splittings, like *jets.*