

Iteration on length of high order correctors

E. Todesco, A. Musso (CERN)

M. Sorbi M. Statera (INFN)

LAYOUT

Iteration on the corrector strength is needed

Summary of strength used in the baseline

Multipole	Intgrated gradient (T m)	(units)	Magnet length (m)
a_2	1	50	0.841
a_3, b_3	0.063	3	0.123
a_4, b_4	0.046	2.2	0.990
a_5, b_5	0.025	1.7	0.107
b_6	0.086	3.2	0.449
a_6	0.017	0.8	0.102

- Larger a₄, b₅, M. Giovannozzi team shows that we are at 87% of the nominal force for order 4 and 5
- Best estimates of field quality are based on 3 short models
 - We see large values of a4 and b5 about 2-3 times larger than our tables
- We shoud act now no time to have ore data from long models

LAYOUT

- Explored possibilities
 - https://indico.cern.ch/event/707076/ (February 2018)
 - 50% more current to get 30% more strength
 - Viable, but does not look as best option: much lower margin, and limited effect
 - 30% more length to get 50% more strength
 - Protection ok, 320 mm more in the cold mass if we also increase order 3
 - We are working to this new baseline
 - Seems to fit in the cold mass no impact on the other magnets
 - Decision by April, call for tender for series is being prepared (contract to be signed in January 2019)
 - Impact on costs is less than 5%, for the moment in the noise

LAYOUT

- Skew and normal should be kept of the same length to avoid different variant and reduce spare number
 - Summary of proposal

Multipole	New intgrated gradient (T m)	Length increase (m)	Magnet length (m)
\mathbf{a}_2	1	unchanged	0.841
a_3, b_3	0.095	+0.060	0.183
a_4, b_4	0.069	+0.050	1.040
a_5, b_5	0.037	+0.050	0.157
b_6	0.086	unchanged	0.449
a_6	0.017	unchanged	0.102

