
Interoperability of Digital Repositories
Adil Hasan

Univ of Liverpool

What's a Digital Repository?

n Place where your data is stored for current and
future use.

n Contains upload tools so you can store and update
your data.

n Contains discovery tools so you can find your data.

n Contains access tools so you can get at your data.

n Recognition that not only the publishable data is
important.

Content Management System?

l Used to store a communities digital content
(documents, audio-visual, etc).

l Primarily focussed on managing the content not on
disseminating the content.

l Focus is on the content production side:

l e.g managing multiple updates to a digital object.

Digital Archive?

l Digital Archive: used to store a communities digital
content that has been appraised as being worthy of
long-term preservation.

l Requires consideration about storage and access.

l Now all repositories holdings considered important.

l Seems now that Digital Repository → Digital
Archive.

What is Interoperability?

n Sorry, but many kinds:
n Share current data with collaborators within my

project.

n Share current data with collaborators outside my
project.

n Use old data with current data.

n Can be achieved by:
n Interoperation of data-sets within a repository

n Interoperation of data-sets in different repositories.

Intra-Repository Issues

n Can they correctly understand the data?
n Metadata, sufficient description

n Can they find the data?
n Flexible discovery, adequate indexing etc.

n Can they access the data?
n Proprietary tools, do they have the tools, know how

to use them.

n Do they have permissions to all the data?
n What part of the data-set, when, for how long,

issues of recognition.

Intra-Repository Issues

n Can they update data/metadata?
n Approval process,validation, versioning,

provenance

n Is it possible to contact a responsible of the old
data?

n For questions about old data that cannot be
answered by the metadata.

n To use data for a different purpose than was
intended.

Extra-Repository Issues
n Is there a uniform way to discover data in

repositories?

n Same terminology used in different repositories?

n Is there a uniform way to access data in
repositories?

n Is it possible to copy data from one repository to
another?

n Because it's closer to me, or less used or has more
space, etc.

n Is it possible to combine data-sets to make a new
data-set?

Workshop Mission

n Are there more 'types' of interoperability we
should think about?

n Are there more issues that we need to take into
account?

n Are there tools that would be extremely desirable
to have?

n How do we go about making datasets
interoperable?

n Is interoperability really important??

IRODS
Adil Hasan

University of Liverpool
Interoperability of Digital Repositories

2-4 Dec 2009

iRODS?

l Based on considerable experience from Storage
Resource Broker (SRB) developed by DICE group.

l Found many groups used SRB to store large quantities of
data.

l A lot of server-side post-processing of the data is
required (e.g. replicate files, convert to different format,
checksum etc).

l Almost all management is Policy driven.

iRODS?

l SRB experience motivated requirements for a new
data management system:

l Contained all SRB functionality.

l Add work-flow to manage server-side post-processing.

l Configurable – only include the 'services' you need.

l Open-source – SRB license imposed sever restrictions on
the academic community.

iRODS?

l integrated Rule Oriented Data Management System.

l Developed by Data Intensive Cyber Environments
(DICE) group at UNC and UCSD.

l Can be seen as a basis for a Digital
Repository/Archive.

l Digital Repository/Archive is a Policy Driven
System.

iRODS

l Client-server middleware

l Consists of database holding metadata information.

l Server applications – one for each storage resource.

l Rule engine applications – one for each storage
resource.

l One server application interfaces to database.

l Client applications/API: C, Java, Python, PHP.

iRODS

• Support for user-defined metadata

– Useful for adding project-specific metadata

– In triplets (attribute, value, unit).

– Support schemas such as Dublin Core, FITS,
DICOM.

– Rules can extract metadata stored in XML files and
populate user-defined metadata.

IRODS

l Provides features essential for Repositories:

l Storage virtualization

l Data location virtualization

l Policy virtualization

l Features provide a flexible, scalable system that is
robust to change.

l All operations carried out by micro-services on
objects in iRODS.

Where iRODS fits?

Storage

Digital Repository

Access

Client interacts with digital repository
to access data

IRODS
Spans
Digital
Repository
and
Storage
Domains

Where iRODS fits?

l IRODS provides infrastructure to manage data.

l Policies implemented as computer actionable rules
which control the execution of remote micro-
services.

l Micro-services interact with data.

l Covers the Storage Management and Storage part of
the digital repository.

Storage Virtualization

l Problem: over time storage will change (e.g. new
HSM, new tape systems, etc).

l Solution: insulate repository from changes through
interface/driver.

l IRODS provides drivers to storage that expose
POSIX standard API.

l Interaction with data performed by micro-services
that communicate with data through the drivers.

Storage Virtualization

Storage System

Storage Driver

Digital Repository

Access

Access to
Storage through
driver.
Provides POSIX
standard
interface.

Storage Virtualization

l Also want to be insulated from changes to storage
name/address.

l Provide logical storage resource name.

l Logical-to-physical resource name mapping.

l All iRODS interactions with Storage use logical name.

Data Location Virtualization

l Problem: physical structure of digital objects on
storage may change in the future.

l Solution: create logical file-path to insulate from
changes to physical path.

l IRODS provides logical-to-physical mapping to
insulate from changes.

l All iRODS interactions use the logical name.

Data Virtualization

• Can group data objects into logical collections.

• Logical collections can span multiple resources.

• Can create a logical collection that spans zones.

• Can register events against collections.

– Notified when data is updated/moved/etc.

Policy Virtualization
l Problem: management applications may change over time.

l Solution: abstract processes such that it is possible to
replace processes without altering workflow.
l IRODS encodes process as a micro-service (C-application)
l Create workflow by compositing multiple micro-services.

l Identify locations in data management framework where
policies should be checked.
l Specify a rule that is checked on each invocation of a framework

management hook.
l Support pre-process hooks for authorization
l Support post-process hooks for audit trails

Storage Virtualization

Storage System

Storage Driver

Access

Access to
Storage through
driver.
Provides POSIX
standard
interface.

Digital RepositoryRules

Micro-ServicesExecutes
processes

Implements
Processes

Rule Engine

ICATLogical namespace

Rules

l Policies are implemented in iRODS as rules.

l Rule is a series of logically connected steps.

l Each step realised as a micro-service.

l IRODS rules fully featured:

l Contain loops and branches.

l Can have rules contained within rules.

l IRODS rules read from a rule-file (called core.irb by
default).

Rules

l Rule follows Event-Action-Recovery chain.

l Event, Action, Recovery domains separated by '||'.

l Rule executed from left-to-right.

l All micro-services in a rule separated by '##'.

l Each action micro-service must have a recovery
(even if it's a nop).

l Input and output variables start with '*'.

Example Rule

l Look at an example rule:

l Rule to query the catalogue to find and print all data
objects that are on the demoResc resource.

l Make use of the core.irb rule acGetIcatResults to
return list of results.

l Use ForEachExec loop to loop over results and print
the values.

Example Rule

Myrule||
acGetIcatResults(list,

"DATA_RESC_NAME = 'demoResc'",
*out)##

forEachExec(*out,
msiPrintKeyValPair(stdout, *out),
nop)|

nop

Rule Name Condition
(event)

Rule
(action)
to
execute

Rule within a rule

Recovery
chain

Loop construct takes as input array *out,
workflow: microservice1##microservice2,
recovery chain: recovery2##recovery1

Rules

l Rules stored in a rule file (default is core.irb).

l Rules read from file top-to-bottom.

l First rule that satisfies event is executed.

l Only one successfully executed rule per event.

l Can override a rule, but overridden rule must appear
later in the rule file.

Rule Engine

l Rules in rule file executed by the rule engine.

l Engine running on each iRODS resource.

l Rule engine triggered by any interaction with the
iRODS server (copy, put, get, etc).

l Except for queries of the catalogue (listing).

l Mainly due to performance reasons.

l But can be overridden.

l Rule engine on server client connects to runs by
default.

Rule Engine

l Also delayed execution rules supported.

l Can execute a rule later.

l Can execute a rule periodically.

l Delayed execution rules are run stored in catalogue.

l By default rule engine polls for delayed execution
rules every 30secs.

l Can direct the rule engine closest to data to execute.

iCATiCAT

Client connects
to non-icat server

User
Authorised

Client wants to
copy data to Octagonal
server

Rule engine triggers

Locate
Octagonal
server

Rule engine triggers

Update
catalogue

Repositories Requirements

l To reliably store data for a defined period of time.
− Allows rules to be placed on data (replication, checksums).

l To ensure data are accessible.
− Rules to migrate data.

− To validate repository assessment criteria
− Rules to parse audit trail, verify integrity, verify retention and

disposition

Federation

l Union of independently administered repositories.

l Useful for:

l Interoperation with other remote repositories that are
independently administered.

l Access to data in different repositories in seamless
manner.

l High-availability system.

Federation Issues

l Rights to access remote repository data (all, some).

l Rights to store data in remote repository.

l Rights to access applications from remote
repository.

l Rights to store applications in remote repository.

IRODS Federation

l IRODS system consists of one iCAT and 0 or more
storage systems (each with its own iRODS server
and rule engine).

l Each iRODS system has its own name-space called
a Zone.

l IRODS allows interoperation between Zones
(Federation).

l IRODS federation at the storage management level.

IRODS Federation

l Creation of iRODS federation essentially:

l Register zones.

l Register users as remote users.

l Grant access to data to remote-zone users.

l Remote user has access to local user data.

l Users authenticated locally then given remote
access.

l Currently any interaction (except 'ls') will cause rule
to trigger on remotely accessed data.

Resources 'federation'

l Useful if just want to interoperate storage
repositories.

l Each repository part of iRODS system.

l Only one zone needed.

l Each site manages its own resource.

l But, each site needs admin privs to manage its
resource.

Zone Federation

l Useful when 'organizations' wish to interoperate
iRODS systems.

l Each Zone controls it's own storage and data.

l A Zone may house data that's part of more than one
repository.

l Can more easily add new resources as opposed to
'resource federation'.

Producer-Reader Federation

l Effectively have one system that is filled with all the
data (the Producer Zone).

l Reader Zones consist of just iCAT server.

l Replicate data of interest to Reader Zones.

l Useful for high-read rate systems where readers are
not interested in cross-zone collections.

Hub-Spoke Federation

l Useful where there may be many producers and
readers.

l Centralized model.

l Each iRODS Zone contains readers and writers.

l Central Zone has all Zones registered.

l Users access central and access data from remote
Zones.

Repository Interoperation

l Federation very useful across iRODS systems.

l In the case of wishing to interoperate with a different
type of system:

l Look at writing an iRODS driver that knows how to talk
to the system so it can appear as an iRODS resource.
Need an iRODS server running on resource.

l Look at writing an iRODS micro-service that can interact
with the system. No iRODS server needed, but thought
required about workflow.

IRODS and Fedora and Dspace

l Projects currently looking at integration of Fedora
repository framework with iRODS manage the back-
end storage.

l D-Grid, DARIAH

l Duke Medical Archives

l Carolina Digital Repository

l DICE provides an interface to Dspace to allow
iRODS to be used as managed storage.

Client

Dspace or Fedora

IRODS System

Dspace and Fedora use iRODS as distributed
Back-end storage. Discovery and indexing handled
by other tools.

Digital Archive

l The SHAMAN (Sustaining HeritAge through
Multivalent ArchiviNg) project

l Looking at digital preservation.

l FP7 integrated project funded until end of 2011.

l 17 EU partners. 2 US collaborators.

l Partners from academia and industry.

l Aim to provide a digital preservation framework.

SHAMAN

l Looking to describe the preservation environment
sufficiently well.

l Such that it's possible to replace services without
impacting preservation of the data.

l In addition looking at the use of Multivalent
technology to 'render' the object stored in the
original format.

l Multivalent Java-based 'render' tool has adaptors
(media engines) capable of reading different
formats.

SHAMAN

l Make use of Cheshire Digital Library tool-kit to
index data.

l Make use of iRODS to provide a means of
abstracting the preservation process and providing
underlying storage.

SHAMAN

CLOUD HSS...

Storage Interface (Grid)

Metadata
Extraction

...
Content
Mgmt

Preservation Process Interface

Administration

Access Interface

Grid interfaces to different
Types of storage. Provides
Uniform Interface

Interface provides uniform
access to different
preservation processes.

Provides uniform access to
data.

SHAMAN
To ensure data usable in the long-term:

l Insulate from hardware changes.
l Insulate from changes to processes.

l Insulate from changes to data format.

l Insulate from changes to description.
l Ensure as much information as possible about data is

captured.
− Ideally test data is understandable without ANY external

dependencies.

SHAMAN aims to provide a framework that accounts for these
issues.

Summary

l IRODS can provide a basis for which digital
repositories or archives can be constructed.

l Have illustrated some of the features of iRODS.

l Have illustrated how some of these features can be
of use in repositories and archives.

l Have illustrated how iRODS can interoperate with
existing systems.

Acknowledgements

• Thanks to:

– Reagan Moore

– Arcot Rajasekar (Raja)

– Mike Wan

– Wayne Schroeder

– Paul Watry

– Jean-Yves Nief

