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What's a Digital Repository?

n Place where your data is stored for current and 
future use.

n Contains upload tools so you can store and update 
your data.

n Contains discovery tools so you can find your data.

n Contains access tools so you can get at your data.

n Recognition that not only the publishable data is 
important.



Content Management System?

l Used to store a communities digital content 
(documents, audio-visual, etc).

l Primarily focussed on managing the content not on
disseminating the content.

l Focus is on the content production side:

l e.g managing multiple updates to a digital object.



Digital Archive?

l Digital Archive: used to store a communities digital 
content that has been appraised as being worthy of 
long-term preservation.

l Requires consideration about storage and access.

l Now all repositories holdings considered important.

l Seems now that Digital Repository → Digital 
Archive.



What is Interoperability?

n Sorry, but many kinds:
n Share current data with collaborators within my 

project.

n Share current data with collaborators outside my 
project.

n Use old data with current data.

n Can be achieved by:
n Interoperation of data-sets within a repository

n Interoperation of data-sets in different repositories.



Intra-Repository Issues

n Can they correctly understand the data?
n Metadata, sufficient description

n Can they find the data?
n Flexible discovery, adequate indexing etc.

n Can they access the data?
n Proprietary tools, do they have the tools, know how 

to use them.

n Do they have permissions to all the data?
n What part of the data-set, when, for how long, 

issues of recognition.



Intra-Repository Issues

n Can they update data/metadata?
n Approval process,validation, versioning, 

provenance

n Is it possible to contact a responsible of the old 
data?

n For questions about old data that cannot be 
answered by the metadata.

n To use data for a different purpose than was 
intended.



Extra-Repository Issues
n Is there a uniform way to discover data in 

repositories?

n Same terminology used in different repositories?

n Is there a uniform way to access data in 
repositories?

n Is it possible to copy data from one repository to 
another?

n Because it's closer to me, or less used or has more 
space, etc.

n Is it possible to combine data-sets to make a new 
data-set?



Workshop Mission

n Are there more 'types' of interoperability we 
should think about?

n Are there more issues that we need to take into 
account?

n Are there tools that would be extremely desirable 
to have?

n How do we go about making datasets 
interoperable?

n Is interoperability really important??
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iRODS?

l Based on considerable experience from Storage 
Resource Broker (SRB) developed by DICE group.

l Found many groups used SRB to store large quantities of 
data.

l A lot of server-side post-processing of the data is 
required (e.g. replicate files, convert to different format, 
checksum etc).

l Almost all management is Policy driven.



iRODS?

l SRB experience motivated requirements for a new 
data management system:

l Contained all SRB functionality.

l Add work-flow to manage server-side post-processing.

l Configurable – only include the 'services' you need.

l Open-source – SRB license imposed sever restrictions on 
the academic community.



iRODS?

l integrated Rule Oriented Data Management System.

l Developed by Data Intensive Cyber Environments 
(DICE) group at UNC and UCSD.

l Can be seen as a basis for a Digital 
Repository/Archive.

l Digital Repository/Archive is a Policy Driven 
System.



iRODS

l Client-server middleware

l Consists of database holding metadata information.

l Server applications – one for each storage resource.

l Rule engine applications – one for each storage 
resource.

l One server application interfaces to database.

l Client applications/API: C, Java, Python, PHP.



iRODS

• Support for user-defined metadata

– Useful for adding project-specific metadata

– In triplets (attribute, value, unit).

– Support schemas such as Dublin Core, FITS, 
DICOM.

– Rules can extract metadata stored in XML files and 
populate user-defined metadata.



IRODS 

l Provides features essential for Repositories:

l Storage virtualization

l Data location virtualization

l Policy virtualization

l Features provide a flexible, scalable system that is 
robust to change.

l All operations carried out by micro-services on 
objects in iRODS.



Where iRODS fits?
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Where iRODS fits?

l IRODS provides infrastructure to manage data.

l Policies implemented as computer actionable rules 
which control the execution of remote micro-
services.

l Micro-services interact with data.

l Covers the Storage Management and Storage part of 
the digital repository.



Storage Virtualization

l Problem: over time storage will change (e.g. new 
HSM, new tape systems, etc).

l Solution: insulate repository from changes through 
interface/driver.

l IRODS provides drivers to storage that expose 
POSIX standard API.

l Interaction with data performed by micro-services 
that communicate with data through the drivers.
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Storage Virtualization

l Also want to be insulated from changes to storage 
name/address.

l Provide logical storage resource name. 

l Logical-to-physical resource name mapping.

l All iRODS interactions with Storage use logical name.



Data Location Virtualization

l Problem: physical structure of digital objects on 
storage may change in the future.

l Solution: create logical file-path to insulate from 
changes to physical path.

l IRODS provides logical-to-physical mapping to 
insulate from changes.

l All iRODS interactions use the logical name.



Data Virtualization

• Can group data objects into logical collections.

• Logical collections can span multiple resources.

• Can create a logical collection that spans zones.

• Can register events against collections.

– Notified when data is updated/moved/etc.



Policy Virtualization
l Problem: management applications may change over time.

l Solution: abstract processes such that it is possible to 
replace processes without altering workflow.
l IRODS encodes process as a micro-service (C-application)
l Create workflow by compositing multiple micro-services.

l Identify locations in data management framework where 
policies should be checked.
l Specify a rule that is checked on each invocation of a framework 

management hook.
l Support pre-process hooks for authorization
l Support post-process hooks for audit trails
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Rules

l Policies are implemented in iRODS as rules.

l Rule is a series of logically connected steps.

l Each step realised as a micro-service.

l IRODS rules fully featured:

l Contain loops and branches.

l Can have rules contained within rules.

l IRODS rules read from a rule-file (called core.irb by 
default).



Rules

l Rule follows Event-Action-Recovery chain.

l Event, Action, Recovery domains separated by '||'.

l Rule executed from left-to-right.

l All micro-services in a rule separated by '##'.

l Each action micro-service must have a recovery 
(even if it's a nop).

l Input and output variables start with '*'.



Example Rule

l Look at an example rule:

l Rule to query the catalogue to find and print all data 
objects that are on the demoResc resource.

l Make use of the core.irb rule acGetIcatResults to 
return list of results.

l Use ForEachExec loop to loop over results and print 
the values.



Example Rule

Myrule||
acGetIcatResults(list, 

"DATA_RESC_NAME = 'demoResc'", 
*out)##

forEachExec(*out, 
msiPrintKeyValPair(stdout, *out), 
nop)|

nop

Rule Name Condition
(event)

Rule
(action) 
to 
execute

Rule within a rule

Recovery
chain

Loop construct takes as input array *out, 
workflow: microservice1##microservice2, 
recovery chain: recovery2##recovery1



Rules

l Rules stored in a rule file (default is core.irb).

l Rules read from file top-to-bottom.

l First rule that satisfies event is executed.

l Only one successfully executed rule per event.

l Can override a rule, but overridden rule must appear 
later in the rule file.



Rule Engine

l Rules in rule file executed by the rule engine.

l Engine running on each iRODS resource.

l Rule engine triggered by any interaction with the 
iRODS server (copy, put, get, etc).

l Except for queries of the catalogue (listing).

l Mainly due to performance reasons.

l But can be overridden.

l Rule engine on server client connects to runs by 
default.



Rule Engine

l Also delayed execution rules supported.

l Can execute a rule later.

l Can execute a rule periodically.

l Delayed execution rules are run stored in catalogue.

l By default rule engine polls for delayed execution 
rules every 30secs.

l Can direct the rule engine closest to data to execute.
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Repositories Requirements

l To reliably store data for a defined period of time.
− Allows rules to be placed on data (replication, checksums).

l To ensure data are accessible.
− Rules to migrate data.

− To validate repository assessment criteria
− Rules to parse audit trail, verify integrity, verify retention and 

disposition



Federation

l Union of independently administered repositories.

l Useful for:

l Interoperation with other remote repositories that are 
independently administered.

l Access to data in different repositories in seamless 
manner.

l High-availability system.



Federation Issues

l Rights to access remote repository data (all, some).

l Rights to store data in remote repository.

l Rights to access applications from remote 
repository.

l Rights to store applications in remote repository.



IRODS Federation

l IRODS system consists of one iCAT and 0 or more 
storage systems (each with its own iRODS server 
and rule engine).

l Each iRODS system has its own name-space called 
a Zone.

l IRODS allows interoperation between Zones 
(Federation).

l IRODS federation at the storage management level.



IRODS Federation

l Creation of iRODS federation essentially:

l Register zones.

l Register users as remote users.

l Grant access to data to remote-zone users.

l Remote user has access to local user data.

l Users authenticated locally then given remote 
access.

l Currently any interaction (except 'ls') will cause rule 
to trigger on remotely accessed data.



Resources 'federation'

l Useful if just want to interoperate storage 
repositories.

l Each repository part of iRODS system.

l Only one zone needed.

l Each site manages its own resource.

l But, each site needs admin privs to manage its 
resource.



Zone Federation

l Useful when 'organizations' wish to interoperate 
iRODS systems.

l Each Zone controls it's own storage and data.

l A Zone may house data that's part of more than one 
repository.

l Can more easily add new resources as opposed to 
'resource federation'.



Producer-Reader Federation

l Effectively have one system that is filled with all the 
data (the Producer Zone).

l Reader Zones consist of just iCAT server.

l Replicate data of interest to Reader Zones.

l Useful for high-read rate systems where readers are 
not interested in cross-zone collections.



Hub-Spoke Federation

l Useful where there may be many producers and 
readers.

l Centralized model.

l Each iRODS Zone contains readers and writers.

l Central Zone has all Zones registered.

l Users access central and access data from remote 
Zones.



Repository Interoperation

l Federation very useful across iRODS systems.

l In the case of wishing to interoperate with a different 
type of system:

l Look at writing an iRODS driver that knows how to talk 
to the system so it can appear as an iRODS resource. 
Need an iRODS server running on resource.

l Look at writing an iRODS micro-service that can interact 
with the system. No iRODS server needed,  but thought 
required about workflow.



IRODS and Fedora and Dspace

l Projects currently looking at integration of Fedora 
repository framework with iRODS manage the back-
end storage.

l D-Grid, DARIAH

l Duke Medical Archives

l Carolina Digital Repository

l DICE provides an interface to Dspace to allow 
iRODS to be used as managed storage.



Client

Dspace or Fedora

IRODS System

Dspace and Fedora use iRODS as distributed
Back-end storage. Discovery and indexing handled
by other tools.



Digital Archive

l The SHAMAN (Sustaining HeritAge through 
Multivalent ArchiviNg) project 

l Looking at digital preservation.

l FP7 integrated project funded until end of 2011.

l 17 EU partners. 2 US collaborators.

l Partners from academia and industry.

l Aim to provide a digital preservation framework.



SHAMAN

l Looking to describe the preservation environment 
sufficiently well.

l Such that it's possible to replace services without 
impacting preservation of the data.

l In addition looking at the use of Multivalent 
technology to 'render' the object stored in the 
original format.

l Multivalent Java-based 'render' tool has adaptors 
(media engines) capable of reading different 
formats. 



SHAMAN

l Make use of Cheshire Digital Library tool-kit to 
index data.

l Make use of iRODS to provide a means of 
abstracting the preservation process and providing 
underlying storage.



SHAMAN
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SHAMAN
To ensure data usable in the long-term:

l Insulate from hardware changes.
l Insulate from changes to processes.

l Insulate from changes to data format.

l Insulate from changes to description.
l Ensure as much information as possible about data is 

captured.
− Ideally test data is understandable without ANY external 

dependencies.

SHAMAN aims to provide a framework that accounts for these 
issues.



Summary

l IRODS can provide a basis for which digital 
repositories or archives can be constructed.

l Have illustrated some of the features of iRODS.

l Have illustrated how some of these features can be 
of use in repositories and archives.

l Have illustrated how iRODS can interoperate with 
existing systems.
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