

Collaring kinematics, mechanics, instrumentation, and mock-ups

P. Ferracin, S. Izquierdo Bermudez, N. Bourcey, M. Daly, S. Ferradas Troitino, A. Foussat, M. Guinchard, C. Loffler, M. Parent, E. Nilsson, J.C. Perez, F-O. Pincot, J.L. Rudeiros Fernandez, F. Savary, G. Spigo, E. Todesco, G. Vallone, F. Wolf

11T Dipole Collaring Task Force Meeting 21 February 2018 CERN

Aknowledgments

- Ten stack measurements
 - Michael Daly
- Coil size under pressure and modulus
 - Jose Luis Rudeiros Fernandez and Susana Izquierdo Bermudez
- Faro arm and CMM measurements
 - Salvador Ferradas Troitino
- Instrumentation and assembly of 150 mm mock-up
 - Michael Daly, Christian Hannes Loffler and Michael Guinchard, Phillip Grosclaude
- Capacitive gauges
 - Arnaud Foussat, Michel Parent, Francois-Olivier Pincot
- Fuji paper tests
 - Felix Josef Wolf
- Finite element models and data analysis
 - Christian Hannes Loffler, Emelie Kristina Nilsson, Susana Izquierdo Bermudez, Giorgio Vallone
- Collaring procedure and mock-up
 - Juan Carlos Perez, Nicolas Bourcey, Christian Hannes Loffler, Michael Daly
- ...and
 - Jose Ferradas Troitino
 - Ezio Todesco
 - Giancarlo Spigo

Plan: step 1 February 2018

Status

- Test with aluminum coils
 - Loading with 0.150, 0100, 0.050 mm excess
 - Analysis data taken with digital image correlation
- CR03
 - First segment and spare segments dimensions measured
- 927 collaring press
 - "Recommissioning" in progress

Collaring mock-up

Status of instrumentation From January 2018

- Both side of the 6 collars equipped with strain gauges in halfbridge configuration (Production)
- Bending and compression stress measurements for collars
- Slits with a gap of 500 µm between nose and pole
- Pole wedges equipped with biaxial strain gauges and angel wires

Aluminum dummy coils

Test protocol

 3 Cycles up to 400 kN (about 45 MPa on midplane in average)

Result : Excess changing

МРа

Dummy coil strain gauges

- Significant differences between coil measurements and computations
- Work in progress

Digital Image Correlation (DIC)

- **Digital image correlation** is an optical method that employs tracking and image registration techniques for accurate 2D and 3D strain measurements.
- A company will come to provide the equipment and do the data acquisition.

DIC results for baseline config.

Vertical Displacement : 0 up to 400kN Vertical Displacement : From 400kN up to Keys inserted

11T-150mm Mock-up

DIC results for baseline config.

- Preliminary strain results;
- 40000 nods in the quadrant model
- Post-processing in progress in collaboration with the company;

Eng. Principal Strain 2 From 0 up to 400kN

Plan: step 1 February 2018

- Next steps
 - Test CR03 spare in 376
 - Loading 1 (virgin coil)
 - No stoppers
 - Cycling at 25%-50% and 75% of maximum collaring force
 - 1-100-1-200-1-300-1-400 kN
 - Key inserted with excess of 0.2 mm per quadrant
 - Full disassembly and replace GI and protection sheet
 - Repeat
 - Validation set-up in 927
 - Repeat test with aluminium dummy
 - Repeat test with CR03 spare

Plan step 2 (coil CR03) March 2018

- 1st collaring mock up (500-1100 mm)
 - Loading 1 (virgin coil)
 - No stoppers
 - Cycling at 25%, 50% and 75% of maximum collaring force
 - Key inserted with excess of 0.2 mm per quadrant
 - Full disassembly
 - Loading 2 (non virgin coil)
 - No stoppers
 - Cycling at 25%, 50% and 75% of maximum collaring force
 - Key inserted with excess of 0.3 mm per quadrant
 - Full disassembly
 - Loading 3-4 (non virgin coil)
 - No stoppers
 - Cycling at 25%, 50% and 75% of maximum collaring force
 - Key inserted with excess of 0.4-0.5 mm per quadrant
 - Full disassembly
 - Loading 5
 - With stoppers
 - Cycling at 25%, 50% and 75% of maximum collaring force
 - Key inserted with excess of 0.4 mm per quadrant
 - Full disassembly

Plan step 2 (coil CR03) March 2018

- 2nd collaring mock up (2300-2900 mm)
 - Same as 1st collaring mock up
- 3rd collaring mock up (4300-4900 mm)
 - Loading 1 (virgin coil)
 - With stoppers
 - Cycling at 25%, 50% and 75% of maximum collaring force
 - Key inserted with excess of 0.2 mm per quadrant
 - Full disassembly
 - Loading 2-3-4 (non virgin coil)
 - With stoppers
 - Cycling at 25%, 50% and 75% of maximum collaring force
 - Key inserted with excess of 0.3-0.4-0.5 mm per quadrant
 - Full disassembly

Plan step 3 (coil 118) April 2018

- Cut 4 sections the first short coil with RRP cable and new insulation scheme (coil 118)
- Perform 2 collaring tests to determine collar parameters for collaring of following short models and series magnets

Appendix

Collaring

• y = 0.9144x + 60.42 $R^2 = 0.823$

Collaring

• y = 0.9144x + 60.42 $R^2 = 0.823$

Shell welding

• y = 0.8283x - 30.124 R² = 0.8403

Shell welding

y = 0.8283x - 30.124
R² = 0.8403

Cool-down

y= 0.9706x + 23.008
R² = 0.8559

Cool-down

y= 0.9706x + 23.008
R² = 0.8559

Step 2

- Cut 6 sections from prototype coil CR03 in order to perform 3 collaring tests
 - In each segment, 2 sections for collaring and 1 for coil measurements → 150+150+300 mm
- In progress: first section by 29/01

Analysis of collaring "Old slide"

- Typical coil "excess" and force
 - 70 mm stopper equivalent to status when key inserted

	Average Excess Quadrant	Applied Force / MN	70 mm stopper deviation / mm
CC101	0.31	32	+0.1
CC102	0.29	32	+0.1
CC103	0.38	32	+0.1
CC104	0.45	22	-0.15
CC104b	0.35	20	-0.15
CC105	0.35	16	-0.15
CC105b	0.30	20	-0.15
CC106	0.33	12	-0.15

Deviation

- Positive → interference
 - Tooling deformed
- Negative → clearance

Key clearance vs stoppers shim

Key clearance vs stoppers shim

Magnet	Shim stoppers (μm)	Stopper height (mm)	Key clearance (μm)
	0	69.7	+300
	100	69.8	+200
	200	69.9	+100
	300	70.0	0
101,102,103	400	70.1	-100
104,105,106	150	69.85	+150

Modelling

Analysis

- Output from ANSYS model
 - For each of the 4 excesses
 - Steps
 - Collaring maximum force
 - After collaring (key inserted)
 - After welding
 - After cool-down
 - During powering: 10%,20%....100% of the nominal force
 - Collar vertical and horizontal deflection
 - Collaring force and clearance
 - Vertical and horizontal stress/strain collar nose
 - Radial and azimuthal stress/strain in pole SG location
 - Contact pressure pole/loading plated in
 - inner layer: r_{in}, r_{mid}, r_{out}
 - outer layer: r_{in}, r_{mid}, r_{out}
 - Radial, azimuthal and VM stress/strain in pole turn and mid-plane turn
 - inner layer: r_{in}, r_{mid}, r_{out}
 - outer layer: r_{in}, r_{mid}, r_{out}
 - SS Shell azimuthal strain/stress in SG locations
 - Total force from shell and between the 2 yokes, collars coil

Analysis: open points

- Strain gauge summary
 - Include all collar gauges
- Measure/analyze collar deflection
- Collaring: impact of stopper shimming on coil stress
 - Is it possible that the deformation of the tooling has positive impact on the coil stress
- Evaluate key insertion clearance according to strain gauge data→ it seems 150 micron
- Plot peak stress considering maximum excess
- Produce ANSYS output, in particular transfer function and unloading
- Pole/nose shim and collar-yoke shim

Analysis of collaring by FEM

Different scenarios considered

2

Analysis of collaring by FEM

Different scenarios considered

Current 4 contacts per collar Alternate 4 standard contacts + outer diameter

2-contact 2 contacts per collar **OD** Outer diameter

Analysis of collaring by FEM

Different scenarios considered

Current-Mid-EQV SAlternate-Mid-EQV S2-contact-Mid-EQV SOD-Mid-EQV

0.2 mm are excess			1 B	ole	aro	020055	
0.2 min arc excess	arc excess	0.2	0.4	0.6		EXCESS	
	EQV-Pole AV.	19	29	39	50		
	EQV-Pole Min.	17	24	28	36		
	EQV-Pole Max.	31	56	83	103		
	Hoop-Pole AV.	-43	-72	-106	-141		
	Hoop-Pole Min.	-50	-91	-154	-191		
	Hoop-Pole Max.	-28	-48	-62	-79		

0 6 mm		c	mid	plane		0.8 mm arc avcass
0.0 mm		3 0.2	0.4	0.6	0.8	0.0 mm arc excess
	EQV-Mid AV.	29	45	62	77	
	EQV-Mid Min.	28	44	59	74	
	EQV-Mid Max.	61	80	101	121	
	Hoop-Mid AV.	-44	-70	-98	-123	
	Hoop-Mid Min.	-69	-91	-117	-147	Scaling x25
	Hoop-Mid Max.	-45	-70	-98	-119	oouning ALO

0.2 mm arc avcass			⊿_₿	ole	are	
0.2 min arc excess	arc excess	0.2	0.4	0.6	0.8	EXCESS
	EQV-Pole AV.	4	10	19	29	
	EQV-Pole Min.	1	1	5	10	
	EQV-Pole Max.	17	37	60	79	
	Hoop-Pole AV.	-17	-43	-76	-110	
	Hoop-Pole Min.	-25	-62	-126	-161	
	Hoop-Pole Max.	-3	-21	-36	-52	

0.6 mm		c	mid	plane		0.8 mm arc avcass
0.0 mm	arc excess	3 0.2	0.4	0.6	0.8	
	EQV-Mid AV.	12	24	40	54	
	EQV-Mid Min.	4	5	7	14	
	EQV-Mid Max.	61	69	53	56	
	Hoop-Mid AV.	-17	-40	-68	-93	
	Hoop-Mid Min.	-20	-44	-73	-101	Scaling x25
	Hoop-Mid Max.	34	32	10	-6	

0.2 mm arc avcass		0	⊿_₿	ole	are	AVCASS	0.6 mm- 3	rcov
0.2 mm arc excess	arc excess	0.2	0.4	0.6	0.8	EXCESS	0.0 mm a	arc exce
	EQV-Pole AV.	5	11	18	29			EQV-Mid
	EQV-Pole Min.	1	2	4	11		E	EQV-Mid N
	EQV-Pole Max.	18	39	65	91		E	QV-Mid N
	Hoop-Pole AV.	-20	-44	-74	-109		ŀ	Hoop-Mid
	Hoop-Pole Min.	-31	-67	-127	-170		Н	loop-Mid
	Hoop-Pole Max.	-7	-24	-42	-70		Н	oop-Mid I

0 6 mm	are aveae	_	mid	plane		0.8 mm arc avcass
0.0 11111	arc excess	0 .2	0.4	0.6	0.8	0.0 mm arc excess
	EQV-Mid AV.	16	26	39	53	
	EQV-Mid Min.	5	6	7	8	
	EQV-Mid Max.	61	81	103	123	
	Hoop-Mid AV.	-18	-40	-64	-88	
	Hoop-Mid Min.	-21	-43	-69	-95	Scaling x25
	Hoop-Mid Max.	34	46	60	73	

0.2 mm arc excess			⊿_ß	ole	are	020000	
0.2 min arc excess	arc excess	0.2	0.4	0.6	0.8	CYCC22	
	EQV-Pole AV.	14	23	35	50		
	EQV-Pole Min.	4	4	11	22		
	EQV-Pole Max.	29	40	72	104		
	Hoop-Pole AV.	-23	-49	-85	-127		
	Hoop-Pole Min.	-28	-67	-136	-188		
	Hoop-Pole Max.	13	-7	-24	-58		

0 6 mm		c	mid	plane		
0.0 11111	arc excess	3 0.2	0.4	0.6	0.8	
	EQV-Mid AV.	22	34	49	66	
	EQV-Mid Min.	4	5	2	1	
	EQV-Mid Max.	62	84	106	128	
	Hoop-Mid AV.	-16	-39	-67	-96	
	Hoop-Mid Min.	-25	-52	-81	-112	Scaling x25
	Hoop-Mid Max.	50	66	83	100	

0.2 mm are excess.		0	م م		oro		are even		midp	blane		0.8 mm arc avcass
0.2 min arc excess	arc excess	0.2	0.4	0.6	0.8	excess 0.0 mm	arc excess	0.2	0.4	0.6	0.8	
	EQV-Pole AV.	7	17	16	19		EQV-Mid AV.	41	50	64	80	
	EQV-Pole Min.	1	7	4	3		EQV-Mid Min.	35	36	41	49	
	EQV-Pole Max.	31	52	53	67		EQV-Mid Max.	92	98	101	94	
	Hoop-Pole AV.	-5	-8	-39	-80		Hoop-Mid AV.	-109	-114	-138	-167	
	Hoop-Pole Min.	-12	-22	-82	-134		Hoop-Mid Min.	-120	-125	-149	-179	Scaling x25
	Hoop-Pole Max.	35	49	36	6		Hoop-Mid Max.	-89	-94	-88	-69	

LS1 – collaring LS2 – collared coil LS3 – shell welding LS4 – 1.9 K LS5 – 12T

X.X lateral pole shim 0.0 collared coil shim

Collaring comparison-EQV Stress during collaring - collars

2-contact

OD

Alternate

Deformation x50

Paolo Ferracin

Excess per half

Collaring mock-up step 1

Collaring mock-up step 1

