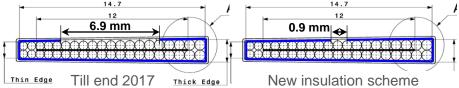


An explanation on what we need for the collaring process

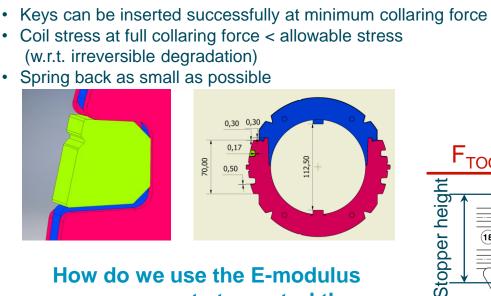
F. Savary on behalf of WP11


11T Dipole Task Force Meeting Nr 8 - CERN 180/1-N51 - 2018-02-21

Allowable stress on cable

- Irreversible degradation on final cable with final insulation scheme
- 3 types of samples No MICA $\sigma_{allowable}$ MICA 25 mm wide Local MICA 31 mm wide . 1.0 0.9 Specimen cross section Degradation 9.0 2.0 (15.6 x 3.8) mm² Test sample made of conductor RRP 144/169, NO Mica 0.4----- Top Cable Bottom Cable 0.325 2005075 100 125150175Transversal stress σ_{RT} in MPa (M

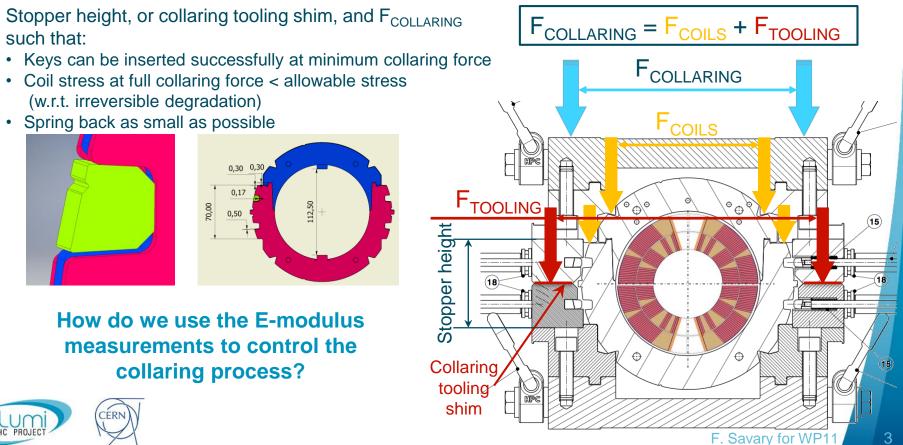
Courtesy P. Ebermann, J. Fleiter, F. Wolf

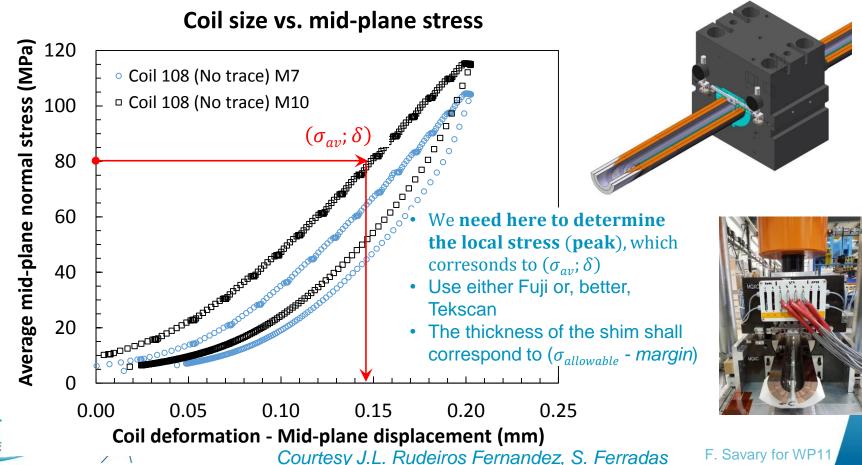

Role of MICA, as stress concentrator

 Optimization of Fiber Glass braiding parameters to reduce thickness of insulation

Parameter	All coils till end 2017		New models & Series production	
Cable width, mm	14.7	185373	14.7	
Cable thickness, mm	1.25		1.25	
Mica width, mm	25		31	
Gap, mm	6.9		0.9	
Gap/cable width, %	50		6	
Gap/cable thickness,	5.5		0.7	and the second
Insulation thickness @ 5 MPa	135	12221	100	

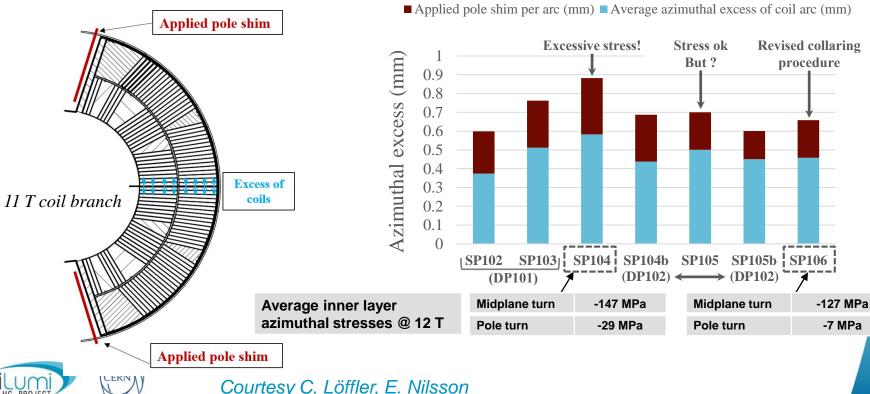
Collaring


How do we use the E-modulus measurements to control the collaring process?


٠

•

such that:


E-modulus measurements on full coil X-section

⁴

Shimming of magnet models

The pre-stress depends on the sum of the azimuthal oversize of the coils with the thickness of the pole shims (... and also on the mechanical properties of the coil)

		ng mock	 Determine Excess, i.e. shim, such that local stress at mid-plane stabelow allowable for the largest coil, first in the modulus press, and the in the collaring mock-u. Check that, for the smallest coil, stress levis still reasonable (not low), first in the E-modulus press, and the in the collaring mock-u. 		hat local d-plane stays able for the first in the E- ess, and then ng mock-up for the l, stress level nable (not too the E- ess, and then
	Step 1	Step 2	Step 3	Step 4	
	No coil No load Keys inserted	Coil No load No key	Coil Collaring load Keys inserted	Coil Collared Keys inserted	
	Coil height	Н	H + Excess	Н	H + Spring back
HILUNI CERN	Key slot height	h	h + Excess	h	≈ h
	Key to slot Gap	G	G - Excess	G	≈G

In production

- Shimming plan based on collaring mock-up made of coil segments cut from coil 118, not anymore on FEM analysis
- Variations of E-modulus acceptable, if margin on allowable stress is sufficient (or can be made sufficient)
- Variations of coil size at rest (no compression) can be compensated, if needed, by changing the thickness of the shim determined by E-modulus measurements and mock-up tests
- Collaring process controlled in displacement (not in load / pressure, and there is no mechanical instrumentation), and collaring cavity shall be closed

