PDF Constraint using LHCb data Z, W^{\pm} and Drell-Yan

F. De Lorenzi¹ R. Mc Nulty¹

¹University College Dublin

PDF4LHC, 23th October 2009

Outline

Analysis

- Hessian method
- NNPDF method

∃ ► < ∃ ►</p>

크

Outline

- Hessian method
- NNPDF method

2

イロト イ団ト イヨト イヨト

• Trigger low p_T muons $p_T > 1 GeV$

- Unique rapidity coverage 1.9 $< \eta < 4.9$
- Possible to reach very small value of x
 - Up to $\sim 5 \cdot 10^{-5}$ with Z and W^{\pm}
 - Up to $\sim 10^{-6}$ with low mass drell-yan
- At nominal luminosity it will collect about 2 *fb*⁻¹ of data in 1 year

LHC parton kinematics

Warning!

All result presented are produced with $E_{cm} = 14 \text{ TeV}$

- Trigger low p_T muons $p_T > 1 GeV$
- Unique rapidity coverage 1.9 $< \eta < 4.9$
- Possible to reach very small value of x
 - Up to $\sim 5 \cdot 10^{-5}$ with Z and W^{\pm}
 - Up to $\sim 10^{-6}$ with low mass drell-yan
- At nominal luminosity it will collect about 2 *fb*⁻¹ of data in 1 year

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Warning!

All result presented are produced with $E_{cm} = 14 \ TeV$

- Trigger low p_T muons $p_T > 1 GeV$
- Unique rapidity coverage 1.9 $< \eta < 4.9$
- Possible to reach very small value of x
 - Up to $\sim 5\cdot 10^{-5}$ with Z and W^\pm
 - Up to $\sim 10^{-6}$ with low mass drell-yan
- At nominal luminosity it will collect about 2 *fb*⁻¹ of data in 1 year

LHC parton kinematics x. = (M/14 TeV) exp(±v 108 Q = M M = 10 TeV 10 M = 1 TeV 10 Q² (GeV²) 10 M = 100 GeV HCb нс 10 10 M = 10 Gefixed 10 target

х

Warning!

All result presented are produced with $E_{cm} = 14 \ TeV$

10

- Trigger low p_T muons $p_T > 1 GeV$
- Unique rapidity coverage 1.9 $< \eta < 4.9$
- Possible to reach very small value of x
 - Up to $\sim 5\cdot 10^{-5}$ with Z and W^{\pm}
 - Up to $\sim 10^{-6}$ with low mass drell-yan
- At nominal luminosity it will collect about 2 fb⁻¹ of data in 1 year

Warning

All result presented are produced with $E_{cm} = 14 \ TeV$

- Trigger low p_T muons $p_T > 1 GeV$
- Unique rapidity coverage 1.9 $< \eta < 4.9$
- Possible to reach very small value of x
 - Up to $\sim 5 \cdot 10^{-5}$ with Z and W^{\pm}
 - Up to $\sim 10^{-6}$ with low mass drell-yan
- At nominal luminosity it will collect about 2 fb⁻¹ of data in 1 year

LHC parton kinematics x. . = (M/14 TeV) exp(+v 108 Q = M M = 10 TeV 10 M = 1 TeV 10 10 Q² (GeV²) M = 100 GeV HC нс 10 10 M = 10 Gefixed 10 target

х

Warning!

All result presented are produced with $E_{cm} = 14 \ TeV$

Uncertainties

Big uncertainties at high rapidity

- Big uncertainties at low mass
- Potentiality for LHCb to constraint PDFs using rapidity distribution for different channels
 - Z
 - W[±]
 - D-Y 2.5-5 GeV

(dominant but difficult experimentally)

- D-Y 5-10 GeV
- D-Y 10-20 GeV
- D-Y 20-40 GeV
- Combinations

(i.e. WWZ)

Uncertainties

- Big uncertainties at high rapidity
- Big uncertainties at low mass
- Potentiality for LHCb to constraint PDFs using rapidity distribution for different channels
 - Z
 - W[±]
 - D-Y 2.5-5 GeV
 - (dominant but difficult experimentally)
 - D-Y 5-10 GeV
 - D-Y 10-20 GeV
 - D-Y 20-40 GeV
 - Combinations

(i.e. WWZ)

Uncertainties

- Big uncertainties at high rapidity
- Big uncertainties at low mass
- Potentiality for LHCb to constraint PDFs using rapidity distribution for different channels
 - Z
 - W[±]
 - D-Y 2.5-5 GeV

(dominant but difficult experimentally)

- D-Y 5-10 GeV
- D-Y 10-20 GeV
- D-Y 20-40 GeV
- Combinations

(i.e. WWZ)

Hessian method NNPDF method

Outline

2 Analysis

- Hessian method
- NNPDF method

2

イロト イ団ト イヨト イヨト

Hessian method NNPDF method

Outline

Hessian method NNPDF method

2

イロト イ団ト イヨト イヨト

LHCb features Analysis

Analysis

- Hessian methods provide a central value and a set of ortogonal eigenvectors

$$f(\mathbf{y}) = f_0(\mathbf{y}) + \sum_i \lambda_i \delta_i(\mathbf{y})$$

- Since f_0 and δ_i are known it is possible to fit for the λ_i

$$\chi^{2} = \sum_{bin} \left(\frac{N_{bin} - \lambda_{0}(f_{0} + \sum \lambda_{i}\delta_{i})}{\Delta_{bin}} \right)^{2} + \sum_{\mathbf{A}} \lambda_{i}^{2}$$
E De Lorenzi PDF41 HC

Analysis

- Hessian methods provide a central value and a set of ortogonal eigenvectors
- An observable, *f*, which is a function of PDF eigenvectors and rapidity, *y*, can be written:

$$f(\mathbf{y}) = f_0(\mathbf{y}) + \sum_i \lambda_i \delta_i(\mathbf{y})$$

where f_0 is the observable evaluated at the central value, λ_i are unknown numbers and δ_i are the deviations of *f* from f_0 obtained when changing the *i*th eigenvector by one unit of uncertainty. All theoretically consistent values of *f* can be found by sampling λ_i from a multinormal distribution.

• Since f_0 and δ_i are known it is possible to fit for the λ_i

Considering rapidity distribution we minimize the χ^2

$$\chi^{2} = \sum_{bin} \left(\frac{N_{bin} - \lambda_{0}(f_{0} + \sum \lambda_{i}\delta_{i})}{\Delta_{bin}} \right)^{2} + \sum_{a \Rightarrow a \Rightarrow b} \lambda_{i}^{2}$$
F. De Lorenzi PDF4LHC

Analysis

- Hessian methods provide a central value and a set of ortogonal eigenvectors
- An observable, *f*, which is a function of PDF eigenvectors and rapidity, *y*, can be written:

$$f(\mathbf{y}) = f_0(\mathbf{y}) + \sum_i \lambda_i \delta_i(\mathbf{y})$$

where f_0 is the observable evaluated at the central value, λ_i are unknown numbers and δ_i are the deviations of *f* from f_0 obtained when changing the *i*th eigenvector by one unit of uncertainty. All theoretically consistent values of *f* can be found by sampling λ_i from a multinormal distribution.

- Since f_0 and δ_i are known it is possible to fit for the λ_i
- Considering rapidity distribution we minimize the χ^2

$$\chi^{2} = \sum_{bin} \left(\frac{N_{bin} - \lambda_{0}(f_{0} + \sum \lambda_{i}\delta_{i})}{\Delta_{bin}} \right)^{2} + \sum_{\delta \geq 0} \lambda_{i}^{2}$$

Hessian method NNPDF method

Analysis

- λ_i are the eigenvalues (function of the PDFs)
- Before fit: uncertainty on λ_i is $\Delta \lambda_i = 1$
- After fit: $\Delta \lambda_i < 1 \rightarrow$ better constraint of the PDF
- Uncertainties are calculated:

$$\delta F = \sqrt{\sum_{ij} \frac{\partial F}{\partial \lambda_i} V_{ij} \frac{\partial F}{\partial \lambda_j}}$$

Altor.

$$\lambda_{ij} = \left(egin{array}{ccccc} < 1 &
eq 0 & \cdots &
eq 0 \
eq 0 & < 1 & \cdots &
eq 0 \
eq & & & & & \\ \vdots & & & & & & \vdots \
eq 0 &
eq 0 & \cdots & < 1 \end{array}
ight)$$

< □ > < 同 > < 回 > < 回 > .

Hessian method NNPDF method

Analysis

- λ_i are the eigenvalues (function of the PDFs)
- Before fit: uncertainty on λ_i is $\Delta \lambda_i = 1$
- After fit: $\Delta \lambda_i < 1 \rightarrow$ better constraint of the PDF
- Uncertainties are calculated:

$$\delta F = \sqrt{\sum_{ij} \frac{\partial F}{\partial \lambda_i} V_{ij} \frac{\partial F}{\partial \lambda_j}}$$

Before:

After:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$V_{ij} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} \qquad V_{ij} = \begin{pmatrix} <1 & \neq 0 & \cdots & \neq 0 \\ \neq 0 & <1 & \cdots & \neq 0 \\ \vdots & \vdots & \ddots & \vdots \\ \neq 0 & \neq 0 & \cdots & <1 \end{pmatrix}$$

Hessian method NNPDF method

Outline

2 Analysis

- Hessian method
- NNPDF method

2

イロト イ団ト イヨト イヨト

Analysis

NNPDF provides Montecarlo replicas of the PDFs

• Generating rapidity distributions with each replica we can compare the prediction of a single replica with the central value

$$\chi_i^2 = \sum_{bin} \left(\frac{N_{bin}^c - \lambda_0 f_i(y)}{\Delta_{bin}} \right)^2$$

where *i* is the index of the replica, N_{bin}^c is the prediction of the central value for that rapidity-bin and $f_i(y)$ is the value of the rapidity distribution generated with the *i*th replica

• We recalculate the central value and the uncertainty rejecting replicas with χ^2 probability smaller than 1%

< ロ > < 同 > < 回 > < 回 >

Analysis

- NNPDF provides Montecarlo replicas of the PDFs
- Generating rapidity distributions with each replica we can compare the prediction of a single replica with the central value

$$\chi_i^2 = \sum_{bin} \left(\frac{N_{bin}^c - \lambda_0 f_i(\mathbf{y})}{\Delta_{bin}} \right)^2$$

where *i* is the index of the replica, N_{bin}^c is the prediction of the central value for that rapidity-bin and $f_i(y)$ is the value of the rapidity distribution generated with the *i*th replica

• We recalculate the central value and the uncertainty rejecting replicas with χ^2 probability smaller than 1%

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Analysis Why selection at 1%

- If we perform 1000 psuedo-experiments generated from a given replica, and calculate the χ^2 compared to the SAME replica, we get a flat probability distribution.
- Only 1% of the time we reject replicas that were actually consistent irrespective of the amount of data.
- On the other hand, incorrect replicas may or may not be consistent. In general, with more data, more incorrect replicas can be rejected.

3 + 4 = +

Analysis Why selection at 1%

- If we perform 1000 psuedo-experiments generated from a given replica, and calculate the χ^2 compared to the SAME replica, we get a flat probability distribution.
- Only 1% of the time we reject replicas that were actually consistent irrespective of the amount of data.
- On the other hand, incorrect replicas may or may not be consistent. In general, with more data, more incorrect replicas can be rejected.

Analysis Why selection at 1%

- If we perform 1000 psuedo-experiments generated from a given replica, and calculate the χ^2 compared to the SAME replica, we get a flat probability distribution.
- Only 1% of the time we reject replicas that were actually consistent irrespective of the amount of data.
- On the other hand, incorrect replicas may or may not be consistent. In general, with more data, more incorrect replicas can be rejected.

Analysis Why selection at 1%

- If we perform 1000 psuedo-experiments generated from a given replica, and calculate the χ^2 compared to the SAME replica, we get a flat probability distribution.
- Only 1% of the time we reject replicas that were actually consistent irrespective of the amount of data.
- On the other hand, incorrect replicas may or may not be consistent. In general, with more data, more incorrect replicas can be rejected.

Outline

NNPDF method

2

イロト イ団ト イヨト イヨト

MSTW08 Electroweak

14

MSTW08 Electroweak

MSTW08 Electroweak

F. De Lorenzi

CTEQ66 Electroweak

CTEQ66 Electroweak

CTEQ66 Electroweak

ALEKHIN Electroweak

2

ALEKHIN Electroweak

F. De Lorenzi

ALEKHIN Electroweak

MSTW08 Drell-Yan

F. De Lorenzi

MSTW08 Drell-Yan

F. De Lorenzi

MSTW08 Drell-Yan

F. De Lorenzi

CTEQ66 Drell-Yan

F. De Lorenzi

CTEQ66 Drell-Yan

F. De Lorenzi

CTEQ66 Drell-Yan

ALEKHIN Drell-Yan

F. De Lorenzi

ALEKHIN Drell-Yan

19

ALEKHIN Drell-Yan

19

Percentage of replicas with χ^2 probability > 1%

	Lumi (<i>fb</i> ⁻¹)		
	0.1	1	10
dy 2.5 - 5.0 <i>GeV</i>	0%	0%	0%
dy 5.0 - 10 <i>GeV</i>	7.4%	0%	0%
dy 10 - 20 <i>GeV</i>	77.1%	16.9%	0%
dy 20 - 40 <i>GeV</i>	98%	75%	0.6%
Z	96.2%	55.3%	3.1%
W ⁺	67.3%	13.7%	0%
W ⁻	66.9%	1.1%	0%
WWZ	22.5%	0.1%	0%

э

NNPDF1.0 Electroweak

NNPDF1.0 Electroweak

2

NNPDF1.0 Drell-Yan

F. De Lorenzi

NNPDF1.0 Drell-Yan

F. De Lorenzi

Model comparison

2

イロト イヨト イヨト イヨト

Luminosity dependence Drell-Yan 2.5 – 5 GeV

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Conclusion

- LHCb will improve PDF in an unexplored region of (x, Q^2)
- Possible improvement up to 96% in some region with low mass Drell-Yan
- Size of the reduction of uncertainty depends on the model

B N A B N