EPS09 and the state of the art nuclear PDFs

Hannu Paukkunen

University of Santiago de Compostela

In collaboration with Kari J. Eskola and Carlos A. Salgado

PDF4LHC, DESY, October 23, 2009

Existing Global NLO-analyses

2004 : nDS by de Florian, Sassot

No uncertainty analysis

2007 : HKN07 by Hirai, Kumano, Nagai

Uncertainty analysis

2009 : EPS09 by Eskola, Paukkunen, Salgado

Uncertainty analysis

Anti-shadowing

Ingredients in EPS09:

DIS & Drell-Yan data with π^0 -data from d+Au and p+p collisions at RHIC

 $\sigma^{AB\to h+X} = \sum_{ijkl} f_i^A(x_1, Q) \otimes f_j^B(x_2, Q) \otimes \sigma^{i+j\to k+l} \otimes D_{k\to h+X}(z, Q_f)$

- Addition of π^0 -data avoids the need of fixing some gluon parameters by hand.
- Assumes that the fragmentation functions D(x,Q) are same in d+Au as they are in p+p.
 (See arXiv:0906.5521 for another point of view.)
- Hessian uncertainty analysis
 - 30 error sets for practical use
 - For both NLO and LO analysis

Pion data

About the Framework

• We define the bound proton PDFs $f_i(x,Q)$ in a nucleus A as

$$f_i^A(x, Q^2) \equiv R_i^A(x, Q^2) f_i^{\text{CTEQ6.1M}}(x, Q^2)$$

- MS, Zero-mass variable flavour number scheme

 $R_V^A(x,Q_0^2)$ for all valence quarks $R_S^A(x,Q_0^2)$ for all sea quarks $R_G^A(x,Q_0^2)$ for gluons

Flavor separation not possible with the data presently used.

A-dependence goes to the fit parameters as

$$z_i^A = z_i^{A_{ ext{ref}}} \left(rac{A}{A_{ ext{ref}}}
ight)^{p_{z_i}}$$

Our definition of χ^2

The best parameters are found by minimizing the generalized χ^2 -function:

$$\chi^2 = \sum_N w_N \, \chi^2_N$$

$$\chi^2_N = \left(\frac{1-f_N}{\sigma^{\rm norm}_N}\right)^2 + \sum_{i \in N} \left[\frac{f_N D_i - T_i(\{z\})}{\sigma_i}\right]^2 \qquad \begin{array}{l} {\rm D_i = Experimental \ values} \\ {\rm T_i = Theory \ values} \\ {\rm \sigma_i = Uncertainty} \end{array}$$

- With weight factors w_N we emphasize certain data sets with important physics content but small amount of data points.

 - Improves the convergence of the fit in the badly constrained regions.
 - Induces, however, also piece of subjectivity to the fit.
- Relative normalization uncertainties σ^{norm} are accounted for by normalization factors $f_N \in [1-\sigma^{norm}, 1+\sigma^{norm}]$.

Uncertainty analysis

 We use the Hessian method for quantifying the nPDF errors with 15 fit parameters

$$\chi^2 \approx \chi_0^2 + \sum_{ij} \delta a_i H_{ij} \delta a_j$$

• We compute the Hessian matrix H by a fit a qudratic function to actual χ^2

$$f(a_i, a_j) = \chi_0^2 + c_i(a_i - a_i^0)^2 + c_j(a_j - a_j^0)^2 + c_{ij}(a_i - a_i^0)(a_j - a_j^0)$$

The 15 eigendirections of the Hessian serve as an uncorrelated basis

$$\chi^2 \approx \chi_0^2 + \sum_i z_i^2$$

Uncertainty analysis

We take $\Delta \chi^2 = 50$ based on requiring the χ^2 -contribution of each data set to remain within its 90% confidence range.

- We construct the nPDF error sets S_k^{\pm} such that they all give $\Delta \chi^2 = 50$
- The uncertainty in any quantity X is then obtained e.g as

$$(\Delta X)^2 \approx \frac{1}{4} \sum_{k} (X(S_k^+) - X(S_k^-))^2$$

Some Results

NLO nuclear modifications for Lead (A=208)

LO result similar but with larger uncertainties

Comparison with data: DIS F₂

$$R_{F_2}^{\mathcal{A}}(x,Q^2) \equiv \frac{F_2^{\mathcal{A}}(x,Q^2)}{F_2^{\mathcal{A}}(x,Q^2)}$$

$$\frac{\frac{1}{A}d\sigma^{lA}/dQ^{2}dx}{\frac{1}{12}d\sigma^{lC}/dQ^{2}dx} \stackrel{\text{LO}}{=} \frac{R_{F_{2}}^{A}(x,Q^{2})}{R_{F_{2}}^{C}(x,Q^{2})}$$

Comparison with data: Drell-Yan

$$\frac{\frac{1}{A}d\sigma_{DY}^{pA}/dx_2dQ^2}{\frac{1}{2}d\sigma_{DY}^{pD}/dx_2dQ^2}$$

Q²-slopes in F₂: DGLAP evolution

$$F_2^{C}(x,Q^2)/F_2^{D}(x,Q^2)$$

$$F_2^{\rm Sn}(x,Q^2)/F_2^{\rm C}(x,Q^2)$$

Gluon constraints from π⁰-data

EMC-effect and shadowing in gluons

$$R_{\rm dAu} = \frac{1}{\langle N_{\rm coll} \rangle} \frac{d^2 N^{\rm dAu}/dp_T d\eta}{d^2 N^{\rm pp}/dp_T d\eta} \stackrel{\rm min.bias}{=} \frac{\frac{1}{2A} d^2 \sigma^{\rm dAu}/dp_T d\eta}{d^2 \sigma^{\rm pp}/dp_T d\eta}$$

Suppression at low-pT comes from shadowing

Downward trend is partly caused by gluon EMC-effect!

Comparison with other works:

Nuclear effects in Lead (A=208):

Error-analysis in HKN07

• Hessian-method with $\Delta \chi^2 = 13.7$

- Restricted form of HKN07 fit-function induces even a node to the gluon uncertainty!
- No uncertainty sets available for practical use.

Contrast between EPS09 and HKN07 in π⁰-production

Inclusive pion data with better statistics could potentially discriminate between different suggested gluon PDFs.

Summary & Outlook

- Factorization in hard processes involving nuclear targets seem to work well – for the data types considered and in the kinematical domain they cover.
- Further experiments might be needed to see the possible violations:
 - p-A runs also at LHC?
 - Electron-Ion collider: eRHIC, LHeC, ...
- Near-future tasks with the nuclear PDF:
 - Extend the analysis to general-mass framework (in progress)
 - Look then also the neutrino data (NuTeV & CHORUS)
 - Include run 8 data from RHIC when available. Direct photons...

PDF4LHC, in February 2008...

By the leading-order analysis EPS08 we pointed out the large uncertainty in the nuclear modification for gluon PDFs.

Comparison with earlier works: LO

Suppression in BRAHMS R_{dAu}

lacktriangle Nuclear modification R_{dAu} for inclusive hadron production:

$$R_{\rm dAu} = \frac{1}{\langle N_{\rm coll} \rangle} \frac{d^2 N^{\rm dAu} / dp_T d\eta}{d^2 N^{\rm pp} / dp_T d\eta} \stackrel{\rm min.bias}{=} \frac{\frac{1}{2A} d^2 \sigma^{\rm dAu} / dp_T d\eta}{d^2 \sigma^{\rm pp} / dp_T d\eta}$$

BRAHMS data: PRL **93**, 242303 (2004)

When interpreting these data, one should not look R_{dAu} alone but pay a serious attention the also to absolute spectra, especially to the p+p baseline.

Suppression in BRAHMS R_{dAu}?

NLO pQCD predictions for the absolute spectra

 $p_T[\text{GeV}]$

 $p_T[\mathrm{GeV}]$

Open issue: Nuclear effects in v-Fe DIS

CTEQ collaboration's first results seem to indicate different nuclear effects in neutrino DIS

I. Schienbein et.al Phys.ReV. D77:054013,2008

- Only v-Fe data was used number of simplifications was thus needed
- A full global analysis should be performed to see whether there is a true discrepancy or not.