
V. Radescu PDF4LHC 2009, DESY

Study on PDF parametrisation 
uncertainties using Monte Carlo

     technique
Voica Radescu

(Physikalisches Institut Heidelberg)
A. Glazov, S. Moch 

(DESY)

1

Outline
Introduction
Method

Chebyshev polynomials
Monte Carlo Technique

Results
Summary



V. Radescu PDF4LHC 2009, DESY

PDFs are crucial inputs for studies at the LHC, therefore precise knowledge and 
understanding of them is essential.

PDFs are parametrised and extracted from fits, however the parametrisation 
uncertainty needs to be evaluated and studied.

Recent efforts by the H1 and ZEUS collaborations to estimate uncertainty on the 
HERAPDF parametrisation by scanning the parameter space affecting especially the high x 
region 

Introduction
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Neural Network PDF group uses Neural Nets to study PDF param. biases 

Standard Parametrisation Form:

describes the shape of PDFs with few input parameters
difficult to study systematically both the low and high x 
regions 
multiple similar solutions for x>xmin 

equivalent solutions for D~0 and Dxmin>>1
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Chebyshev Polynomials
Another method, mathematically more robust to study parametrisation biases, is to 
use orthogonal polynomials to parametrise PDFs : Chebyshev Polynomials of Ist kind

• Orthogonally defined in the [-1,1] interval and given by the recurrence relation:

To approximate PDFs, change variable                                                                       
such that [log(xmin),0] interval is mapped to [-1,1]
This allows to approximate PDF with few parameters:

• Momentum Sum Rule leads to simple finite integrals
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Settings
    The study is performed using:

Published H1-HERA I data of NC and CC e±p scattering cross sections 
following EPJ C30,1 (2003)

Fit program H1 QCDNUM implementation at NLO:
        renormalisation scheme, DGLAP evolution at NLO, massless quarks (ZMVFNS)
starting scale Q02= 4 GeV2

PDFs are parametrised a la ZEUS Parametrisation  [EPJ C42,1(2005)hep-ph/0503274] 

                                                                    with xΔ fixed

                                                                            using Chebyshev Polynomials up to the 
15th  order in series expansion 

only for xG(x) 
xS(x) with standard parametrisation 

for xG(x) and xS(x)

Chebyshev Polynomials can reproduce 
the shape of the standard parametrisation

Errors are estimated using Monte Carlo technique [DESY-PROC-2009-02]
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Method consists in preparing replicas of data sets allowing the central values of the 
cross sections to fluctuate within their systematic and statistical uncertainties taking into 
account all point to point correlations

• Various assumptions can be considered for the error distributions: Gauss, Log-Normal ...

Shift central values randomly within their uncorrelated errors assuming Gauss distributions 
of the errors:

Shift central values with the same probability of the corresponding correlated systematic 
shift assuming Gauss distribution of the errors:

Preparation of the data is repeated for N times (N>100):
For each replicas NLO QCD fit is performed to extract the PDF set

Errors on the PDFs are estimated from the RMS of the spread of the N curves 
corresponding to the N individual extracted PDFs

Monte Carlo technique

5



V. Radescu PDF4LHC 2009, DESY

Results
All Plots are shown for Gluon distribution at Q2=4GeV2

MC replicas are shown in green lines (N>400)
The uncertainty is estimated as the RMS of the spread and is shown in red
It is interesting to observe the shape difference with the increased number of Chebyshev parameters:

for both Gluon and Sea parametrised by Chebyshev Polynomials
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Results in more details

All Plots are shown for gluon 
distribution at Q2=4GeV2

MC replicas are shown in green 
lines (N>400)

The uncertainty is estimated as 
the RMS of the spread and is 
shown in red

Study in more details for fixed x 
points 

x=0.0001
x=0.001
x=0.01
x=0.1 

at the edges of sensitivity and for 
the bulk of precision.
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RMS distributions at selected x
We look at the RMS values for 
increasing number of Chebyshev 
parameters (3-15):

for Gluon only
for Sea and Gluon 

More fluctuations are observed for 
Sea and Gluon case than for Gluon 
only:

Gluon and Sea are strongly coupled 
by DGLAP evolution
Sea parametrisation is more rigid 
(standard param.) and it doesn’t allow 
gluon to fluctuate that much

RMS does not increase significantly 
with increasing number of parameters 
for x region 0.001-0.01, where most 
of data are.
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Constraining the shape of PDFs
Humpy shapes in x can be 
correlated with peaks in the 
hadronic state invariant mass W:

Resonances are observed at low W 
but they disappear for W>10 GeV
• [JLAB CLAS experiment]

Idea: use “length” along the PDFs as 
an extra constraint [W. Giele]:

prefer solutions which are 
smoother in W
add length penalty to χ2 

Wmax=320 GeV

9

W ≈ Q

√
1− x

x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6

Q
2
=0.525 GeV

2

JLAB CLAS, PRC 73, 045205 (2006)

W, GeV

F
d 2

0

2

4

6

8

10

12

14

16

-4 -3 -2 -1 0
x

x
 G

humpy

flat

0

2

4

6

8

10

12

14

16

0 100 200 300
W, GeV

x
 G

humpy

flat

L =
∫ Wmax

Wmin

√

1 +
(

dxf(W )
dW

)2

dW

Q2=4GeV2

∆χ2 = P · (L− Lmin)

Lmin = Wmax −Wmin



V. Radescu PDF4LHC 2009, DESY

Effect of the length constraint
Run the MC replicas by applying the length 
constraint for the following cases:

Penalty p=10, 100, 1000
the length penalty is only added at the 
starting scale Q2  = 4 GeV2

choose Wmin = 20 GeV 
concentrate on the low x region

The Constraint is efficient (χ2/ndf) 
(15x15) p=0        479 / 588
(15x15) p=10      481 / 588
(15x15) p=100    486 / 588
(15x15) p=1000   514 / 588

(stand.param       551 / 611)
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Effect of the length constraint

Even soft constraint against extra 
minima reduces error at low X

p=10 (red line)

Tighter constraints limit the 
uncertainty better than the data.

For x=0.1 constraint does not do 
much

For the bulk of the data constraint 
does not do much for RMS but it 
becomes more constant vs Npar.
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Summary

Presented a new study on the PDF parametrisation using Chebyshev polynomial with the 
emphasis on the low x region for gluon and sea quarks:

Parametrisation with Chebyshev Polynomials offers more flexibility for the PDFs than the 
standard parametrisation form
Observe larger variations of the Gluon uncertainty at the edges of data sensitivity  

Presented a method to constrain PDFs using simple, physically motivated penalty term 
against extra minima/maxima vs W.

The data are stable vs parameterisation change in the bulk region x=0.001-0.01.
Minimal constraint improve precision for smallest x.
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Double minima issue

A feature is observed for low number of Chebyshev parameters.
Two solutions are preferred by the minimisation procedure for n=3 Chebyshev 
parameters, clearly observed at x=0.1

both gluon and sea distributions are parametrised by Chebyshev polynomials 
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First General Remarks
Using Chebyshev Polynomials offers more flexibility for the PDFs than the standard 
parametrisation form 

Larger variations of the xG(x) uncertainty at the edges of sensitivity are observed

Slow increase of the uncertainty for the region where the data is very precise

Problem of 2 solutions goes away starting from n=5

Is it physical to allow for oscillations vs x in PDFs ?
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