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Laser Interferometer Gravitational-wave Observatory

-Twin 4-km interferometers at Livingston and Hanford

-Most sensitive to O(10)-O(1000) Hz, correspond to stellar
mass objects, e.g. stellar mass binary mergers, supernova.

-Currently finished the first (O1) and second (O2) observing
runs and are undergoing upgrade. LIGO plan to resume
observation at the beginning of next year.
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Possible gravitational-wave sources
detectable by LIGO

-Stellar mass compact binary mergers

» Binary black hole mergers

» Binary neutron star mergers

» Neutron star-black hole mergers

-Supernova

-Continuous waves: compact binary, rotating star

-Stochastic background: superposition of unresolved binaries
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» Neutron star-black hole mergers
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\/ Binary black hole mergers
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No solid electromagnetic counterpart was found for any binary black hole merger.




\/ Binary neutron star mergers
Abbott et al., 2017
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\/ Binary neutron star mergers

\/ Electromagnetic counterparts
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Binary neutron star merger GW170817 were accompanied

by a short gamma-ray burst and a kilonova.



V/ Binary neutron star mergers

» Neutrino counterparts

-Short time scale (O(100) seconds) prompt emissions
associate with the short gamma-ray burst.

-Long time scale (days to weeks) emissions associate
with long-lived hyper massive neutron star.

No neutrino counterparts has been found so far.
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Image credit: NAS‘A'S Q,oddard Space Flight Center and CI Lab
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Image credit: NASA's Goddard Space Flight Center
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Multi-Messenger Results from

Binary Neutron Star Melger 70317
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LVC collaboration, Fermi collaboration, INTEGRAL collaboration (2017)
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LVC collaboration, Fermi collaboration, INTEGRAL collaboration (2017)

Spatial Agreement




LVC collaboration, Fermi collaboration, INTEGRAL collaboration (2017)

Spatial Agreement

The connection between short gamma-ray bursts and binary
neutron star mergers is confirmed.




What we learned from
GRB170817A7

Scenario i: Uniform Top-hat Jet Scenario ii: Structured Jet Scenario iii: Uniform Jet + Cocoon
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What we learned from
GRB1 7081 7A?
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The afterglow observations in X-ray and radio bands preferred
the structured jet model.




What we learned from
GRB170817A7
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What we learned from
GRB170817A7
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The 1.7s time separation constrains the speed of gravitational-

wave to within -3 x 10-15 and 7 x 10-16 times of the speed of light.




Image C,reo_lit:,NASA's Q,oddard Space Flight Center and CI Lab
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DECam kilonova discovery

GW170817 GW170817
DECam observation DECam observation
(0.5-1.5 days post merger) (>14 days post merger)

Soares-Santos, ~, Chen et al., ApJL, 2017
17



DECam kilonova discovery

GW170817 GW170817
DECam observation DECam observation
(0.5-1.5 days post merger) (>14 days post merger)

First discovery of kilonova.

Soares-Santos, ~, Chen et al., ApJL, 2017
17



What we learned from L
kilonova AT 2017gfo?

Combining the mass of ejecta and
the merger rate of binary neutron
stars—

squeezed dynamical
v ~ 0.2¢c-0.3c

' tl l
, : vV =~
disk wind
v <0.1c

Neutron Star + Neutron Star
remnant prompt collapse to black hole

Kasen et al. Nature (2017)



What we learned from 18
kilonova AT 2017gfo?

Combining the mass of ejecta and

squeezed dynamical
v ~ 0.2c¢-0.3c

the merger rate of binary neutron
stars—

: tidal ical
,* VvV ~ om

disk wind
v < 0.1c

Binary neutron star mergers

dominate the r-process production
in the Universe. Neutron Star + Neutron Star

remnant prompt collapse to black hole

Kasen et al. Nature (2017)



What we learned from 9
kilonova AT 2017gfo?

From observations:

-Early time featureless optical
emission.

-Late time broad spectral bump in o
infrared. '

Neutron Star + Neutron Star
remnant prompt collapse to black hole

squeezed dynamical
v ~ 0.2¢-0.3c

Kasen et al. Nature (2017)



What we learned from k
kilonova AT 2017gfo?

From observations:

-Early time featureless optical
emission.

-Late time broad spectral bump in
infrared.

The kilonova emission can be
explained by a combination of 2 to

3 distinct mechanisms of mass
ejections.

squeezed dynamical
v ~ 0.2c¢-0.3c

‘ tidal ¢ ical
'* VvV =~ Om

disk wind
v < 0.1c

Neutron Star + Neutron Star
remnant prompt collapse to black hole

Kasen et al. Nature (2017)



Image credit: IceCube Collaboration
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What we learned from
the non-detection of neutrinos?

GW 170817 Neutrino limits (fluence per flavor: vy +7,)

.
— No neutrino counterparts were
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LVC, ANTARES, IceCube, Pierre Auger collaboration (2017)
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Image credit: TAKE 27 LTD/SPL
22

¢

Multi-Messenger Results from the
Binary Neutron Star Merger GW170817
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Tension in Hubble constant measurement

The Hy measurement from local distance ladder and cosmic
microwave background are inconsistent.

SH,ES reedman (2017)
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Hubble Trouble: A Crisis in Cosmology?

By Sophia Chen

2018 APS April Meeting, Columbus, Ohio — In 2013, the European Space Agency’s Planck Observatory
released a map of the cosmic microwave background (CMB) — with the highest resolution to date.

That’s when the trouble started.

Applying the standard model of cosmology — the Lambda Cold Dark Matter (\CDM) model — researchers used
the CMB map to calculate the Hubble constant, a number that describes how quickly the universe is expanding.
But that number disagreed with calculations based on telescope observations of supernovae and pulsating stars.
Today, various CMB calculations of the Hubble constant differ from stellar and supernovae versions by more than
&bt Ntw ﬂﬂ‘l’k @lﬂ\tﬁ 5 percent, equivalent to about three standard deviations. To a smaller degree, the Hubble constant differs
between different CMB observations, too.

Cosmos Controversy: The Universe
Is Expanding, but How Fast?

A small discrepancy in the value of a
long-sought number has fostered a debate
about just how well we know the cosmos.

Dennis Overbye

OUT THERE FEB. 20, 2017
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H(z) = HO\/QM(l + 2)3 4+ Qu(1 + 2)2 + Qa (1 + 2)3(1Fwotwa) g=3waz/(1+42)

Standard siren (Schutz 1986, Holz & Hughes 2005):

-D; Luminosity distance:
Amplitude of the gravitational-wave signal

-z (~v/c) Redshift:
Electromagnetic-wave counterpart
and/or the host of the system



First Hubble constant measurement from
binary neutron star merger (GW170817)

GW170817 GW170817
DECam observation DECam observation
(0.5-1.5 days post merger) (>14 days post merger)

Soares-Santos, ~, Chen et al., ApJL, 2017
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From LI.GO—VHgo:
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First Hubble constant measurement from
binary neutron star merger (GW170817)

GW170817 GW170817
DECam observation DECam observation
(0.5-1.5 days post merger) (>14 days post merger)

From electromagnetic:

(V) i§017 + 1606 km/s

From LI.GO—Virgoz

Dy = 43725 Mpc

Soares-Santos, ~, Chen et al., ApJL, 2017
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First Hubble constant measurement from
binary neutron star merger (GW170817)

GW1708 — p(Ho | GW170817)
Planck!’
: : SHoES!8

Ho = 70+1% km /s/Mpc
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Soares-Santos, ~, Chen et al., ApJL, 2017
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First Hubble constant measurement from

binary neutron star merger (GW170817)

GW1708

—— p(Ho | GW170817)
Planck!’
SHoES1!8

Ho = 70+1% km /s/Mpc

0.00

. First Hubble constant measurement with gravitational-wave. n




2% Hubble constant measurement
within 5 years

Projected Year:

2019 2022

Chen et al. Nature in press
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Image credit: TAKE 27 LTD/SPL
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Multi-Messenger Results from the
Binary Neutron Star Merger GW170817
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Test of general relativity

-Vector and scalar polarizations in gravitational-wave.

Using the sky location of the EM counterpart to constrain the
corresponding antenna patterns of the vector and scalar
polarizations.

-Gravitational-wave energy leaks to extra dimensions (Pardo et
al. 2018).

Comparing the GW and EM measured distance and looking
for the difference due to the leak.

28
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No violation of general relativity was found.

28



Image credit: NASA'S Goddard Space Flight Center and Cl Lab

Multl-Messenger Results from the
Binary Neutios ‘pq-rMerger GWi70817

-The connection between short gamma-ray bursts and binary neutron
star mergers is confirmed.

-The afterglow observations in X-ray and radio bands ruled out the
top-hat model, and preferred the structured jet model.

-The 1.7s time separation constrains the speed of gravitational-wave
to within -3 x 10-15 and 7 x 10-1¢ times of the speed of light.

-First discovery of kilonova.

-Binary neutron star mergers dominate the r-process production in
the Universe.

-The kilonova emission can be explained by a combination of 2 to 3
distinct mechanisms of mass ejections.




Image credit: NASA's Goddard Space Flight Center and CI Lab

Multi-MessengenResults from the
Binary N cuton Star Merger GW170817
‘& p~

-The distance and the inclination angle of the binary neutron star
merger are not expected to lead to a neutrino detection.

-First Hubble constant measurement with gravitational-wave.

-No violation of general relativity was found.



Summary

The era of gravitational-wave astronomy and
cosmology has begun. More collaborations between
multi-messenger communities will be important to
obtain the best scientific outcome.

31



