IPA 2018: Interplay between Particle and Astroparticle physics 8-12 Oct 2018, Cincinnati, OH, USA

Status and Prospects of LFUV Measurements in B physics

Akimasa Ishikawa (Tohoku)

Lepton Flavor Universality Violation

- In the Standard Model (SM) of the elementary particle physics, Lepton Flavor Universality (LFU) holds (except for Higgs) and is well tested in many decays.
 - Charged current : ~2% precision in W decay BF (~2.7sigma deviation for τ/μ ?)
 - Neutral current : ~0.3% precision in Z decay BF
- If LFU Violation (LFUV) is observed, it is a clear sign of new physics (NP).

LFUV in B decays

- Recently, two hints of LFUV are found in $b \rightarrow c\tau v$ and $b \rightarrow sl^+l^-$
 - Anomaly in $b \rightarrow c \tau v$ driven by LHCb, Babar and Belle.
 - − Anomaly in $b \rightarrow sl^+l^-$ Driven by LHCb

Iree BF~O(10⁻²)

Loop BF~O(10⁻⁶)

LFUV in B decays

- Recently, two hints of LFUV are found in $b \rightarrow c\tau v$ and $b \rightarrow sl^+l^-$
 - Anomaly in bightarrow cau v driven by LHCb, Babar and Belle. \sim 3.8 σ
 - − Anomaly in b→sl⁺l⁻ Driven by LHCb Naïve combination of R_{κ} and $R_{\kappa*} \sim 4\sigma$

Comparison of Experiments "LHCb" and "Babar and Belle"

exp@accel	LHCb@LHC	Babar@PEP-II and Belle@KEKB
collision	Proton-proton collisions at 7~13TeV	Electron-positron collisions at 10.58GeV on Y(4S) resonance
b pair cross section	σ=71~144pb	σ=1.08 nb
b motion in CMS	Boosted to forward, p/M>>1	Almost at rest, p/M<<1
Background in b events	Many particles from primary vertex	No physics background Only pair of B mesons produced
Detector coverage	2<η<5, forward spectrometer	~94% of 4π

Belle detector Aerogel Cherenkov cnt SC solenoid n=1.015~1.030 1.5T CsI(TI) $16X_0$ **TOF** conter 8 Ge Central Drift Chamber small cell +He/C2H6 ics Si vtx. det. μ/K_{i} detection 14/15 lyr. RPC+Fe 3/4 lvr. DSSD

$b \rightarrow c \tau v$

LFUV in b $\rightarrow c\tau v$

- $b \rightarrow c\tau v decay$
 - At least two neutrinos in the final states
 - Decay from 3^{rd} generation b quark to 3^{rd} generation τ lepton
 - Sensitive to NP coupling to heavy particles : charged Higgs
 - Sensitive to NP strongly coupling to 3rd generation : Leptoquark (LQ), flavored W'
- The ratio of BF to electron or muon modes is good observable
 - Form factor uncertainties (mostly) cancel out
 - Experimental systematics also cancel out

 $\mathbf{R}(\mathbf{D}^{(*)}) = \frac{\mathbf{BF}(\mathbf{B} \rightarrow \mathbf{D}^{(*)} \tau \mathbf{v}_{\tau})}{\mathbf{BF}(\mathbf{B} \rightarrow \mathbf{D}^{(*)} \mathbf{l} \mathbf{v}_{l})}$

- Kinematic distributions can be used to discriminate new physics models
 - q^2 distribution : mass squared of τ - ν system
 - Polarizations of τ and D*

Reconstruction of $B \rightarrow D^{(*)} \tau v$ at Babar/Belle

- Reconstruct the other B meson (tag side)
 - Hadronic B decays : $B \rightarrow D\pi$ etc
 - Semi-leptonic B decay : $B \rightarrow D^* I_{\nu} |_{l=e,\mu}$
 - Tagging efficiencies are about 0.3%
- Reconstruct decay products of $\mathsf{D}^{(*)}$ and τ from signal side
 - leptonic τ decays : evv, $\mu\nu\nu$
 - hadronic τ decays : $\pi^+\nu$, $\rho^+\nu$
- Missing mass squared is a powerful discriminator of main backgrounds
 B→D^(*)Iv
 - Zero missing mass for normalization $B \rightarrow D^{(*)} |_{V}$
 - One neutrino
 - Large missing mass for $B \rightarrow D^{(*)} \tau v$ signal
 - At least two neutrinos
- Extra energy in Calorimeter is the final discriminator
 - Should be consistent with zero

Reconstruction of $B^0 \rightarrow D^{*+} \tau v @ LHCb$

D⁰bar

- At least 2 (pseudo-)tracks needed
 - D and τ fly since both have finite lifetime of O(1)ps
- Displacement of the vertex position from primary vertex is powerful tool to eliminate backgrounds

K+

 π^{-}

PV

• $B \rightarrow D\tau v$ is more difficult than $B^0 \rightarrow D^{*+}\tau v$

PV

 $B^0 \rightarrow D^- \tau v : 1 \text{ track} \rightarrow \text{difficult}$

9

 $B^0 \rightarrow D^{*} \tau v : 2(pseudo-)tracks \rightarrow OK$

B⁰

Summary on R(D^(*))

	tagging	τ Decays	R(D*)	R(D)
Babar2012	Hadronic	e,µ	$0.332 \pm 0.024 \pm 0.018$	$0.440 \pm 0.058 \pm 0.042$
Belle2015	Hadronic	e,µ	$0.293 \pm 0.038 \pm 0.015$	$0.375 \pm 0.064 \pm 0.026$
LHCb2015		μ	$0.336 \pm 0.027 \pm 0.030$	
Belle2016	Semileptonic	e,µ	$0.302 \pm 0.030 \pm 0.011$	
Belle2016	hadronic	π, ρ	0.270 ± 0.035 ^{+ 0.028}	
LHCb2018		a ₁	$0.291 \pm 0.019 \pm 0.029$	
theory			0.258 ± 0.005	0.299 ± 0.003

Some sensitivity to NP model

Tanaka and Watanabe 1212.1878

Polarizations

- Measurements of Polarizations of τ and D* can discriminate NP models
 - τ polarization

$$\frac{d\Gamma}{d\cos\theta_{hel}(\tau)} = \frac{1}{2} (\mathbf{1} + \alpha \mathbf{P}_{\tau} \cos\theta_{hel}(\tau))$$

$$\alpha = 1.0 \text{ for } \tau \to \pi\nu; \quad \alpha = 0.45 \text{ for } \tau \to \rho\nu$$

$$P_{\tau}(D^*)_{\text{SM}} = -0.497 \pm 0.013$$
M. Tanaka and R. Watanabe,
Phys. Rev. D 87, 034028 (2013)

D* longitudinal polarization

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\rm hel}(D^*)} = \frac{3}{4} [2F_L^{D^*}\cos^2(\theta_{\rm hel}(D^*)) + (1 - F_L^{D^*})\sin^2(\theta_{\rm hel}(D^*))]$$

SM: $F_L^{D^*} = 0.46 \pm 0.03$

(Phys. Rev. D 95, 115038 (2017), A.K. Alok, et al)

The first polarization measurements are performed by Belle 11

Measurements of Polarizations at Belle

Phys. Rev. Lett. **118**, 211801 (2017)

- τ polarization
 - Hadronic tagging
 - $\tau \rightarrow \pi v$ and ρv are used as polarimeter

 $P_{\tau}(D^*) = -0.38 \pm 0.51(stat.)^{+0.21}_{-0.16}(syst.)$

 $P_{\tau}(D^*)_{\text{SM}} = -0.497 \pm 0.013$ <u>M. Tanaka and R. Watanabe</u>, Phys. Rev. D 87, 034028 (2013)

- D* longitudinal polarization
 - Inclusive hadronic tagging to increase signal
 - $D^{*+} \rightarrow D^0 \pi^+$
 - Only $\cos\theta_{hel}$ <0 is used where slow pion efficiency is reliable

$$- τ → πν, evv, μνν$$
New at CKM2018
$$F_L^{D^*} = 0.60 \pm 0.08(stat.) \pm 0.035(syst.)$$
SM: $F_L^{D^*} = 0.46 \pm 0.03$

Both are consistent with the SM prediction

$b \rightarrow s |^+|^-$

LFUV in $b \rightarrow sl^+l^-$

- $b \rightarrow sl+l- decay$
 - Sensitive to
 - NP in loop : SUSY (but not generate large LFUV)
 - NP in tree : Leptoquark (LQ), flavored Z'
- The ratio of BF for electron to muon modes clean observable
 - Form factor uncertainties cancel out
 - No uncertainty due to charm loop
 - Consistent with unity except for very low q²

- LFUV in kinematic distributions are also sensitive to NP
 - Angular distribution such as $Q_5 = P_5'^{\mu} P_5'^{e}$

Capdevila, Crivellin, Descotes-Genon, Matias, Virto 1704.05340

Measurement of R_{K*} at LHCb

- Muon mode is easy and very clean
- Electron mode is hard due to bremsstrahlung
 - Tail in B mass distribution
 - Background from J/psi and partcial reconstruction of similar decay modes

Results on R_{K} and R_{K*} by LHCb

- All results are about 30% smaller than the SM predictions.
- Naïve combination gives ~4σ effects

[0.045, 1.1]GeV² [1.1, 6]GeV²

LFUV in Angular Distribution : Q_5'

- LHCb first observed deviation in one of the angular observables P₅' for muon mode in 2013
 - LHCb updated in 2015. Still 3.9σ deviation seen
 - Then Belle and ATLAS confirmed.
 - Suggest new physics in vector current in muon mode (or charm loop??)
 - $C_{9\mu}^{NP} \simeq -1.1 (C_{9\mu}^{SM} \simeq 4)$
 - About 30% deficit from the SM
- Belle then, measure both electron and muon to test LFUV in the angular observables

Difference should be zero in SM

q² and three angles

 $- Q_5 = P_5'^{\mu} - P_5'^{e}$

$$\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^4\Gamma}{\mathrm{d}\cos\theta_\ell \,\mathrm{d}\cos\theta_K \,\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{9}{32\pi} \begin{bmatrix} \frac{3}{4}(1-F_L)\sin^2\theta_K + F_L\cos^2\theta_K + \frac{1}{4}(1-F_L)\sin^2\theta_K\cos2\theta_\ell \\ -F_L\cos^2\theta_K\cos2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\phi + S_4\sin2\theta_K\sin2\theta_\ell\cos\phi \\ -F_L\cos^2\theta_K\cos2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\phi + S_4\sin2\theta_K\sin2\theta_\ell\cos\phi \\ +S_5\sin2\theta_K\sin\theta_\ell\cos\phi + S_6\sin^2\theta_K\cos\theta_\ell + S_7\sin2\theta_K\sin\theta_\ell\sin\phi \\ +S_8\sin2\theta_K\sin2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin2\phi \end{bmatrix}, \qquad 17$$

Results on Q₅ at Belle

- Consistent with both SM and NP with $C_{9}^{\mu}{}_{NP} = -1$
 - Uncertainty is still large to discriminate

Future Prospects on LFUV

Belle II and Upgraded LHCb

- Belle II will accumulate 50ab⁻¹ in 2025
 - 50times larger than Belle
- Upgraded LHCb will accumulate 50(300)fb⁻¹ in 2030(2037)

Future Prospects on R(D^(*)) at Belle II

- Tagging effciency improved about factor 2
- We could observe 5σ deviation of R(D) VS R(D*) in 2021 if central value unchanged
 - Sensitivity of R(D*) is 0.006 in 2025.
- Then, model descrimination with Polarization measurments

1year delay, Blue one is nominal scenario

Future Prospects on R(D*) at LHCb

- LHCb could observe 5σ deviation of R(D*) in 2022 if central value unchanged
- With 300fb⁻¹, the sensitivity is better than Belle II with 50ab⁻¹ and current theory
 - Systematic uncertainty is assumed to scale as inverse of square root of luminosity : L^{-1/2}

Prospects on R_{K} , R_{K*} and R_{Xs} at Belle II

- Ideal place to measure R_H
 - bremsstrahlung photon can be recovered easily
 - Both high and low q² accessible
 - Dominant systematics due to lepton ID ~0.4% is smaller than stat one even with 50ab⁻¹
- We can observe NP using R_{κ} and R_{κ^*} with ~10/ab data in 2022
 - if central values unchanged
 - Using R_{xs} with 20/ab correlation
- About 3% uncertainty for both high and low q² with 50/ab Low 1<q²<6GeV²

High q²>14.4GeV²

– Assuming SM predictions for R_X

Prospects on R_{K} , R_{K*} and R_{Xs} at LHCb

- With 23fb⁻¹, sensitivity for low q² [1.1, 6]GeV² is comparable to Belle II with 50ab⁻¹ (~3%).
- With 300fb⁻¹, sensitivity for low q² is better than current theory uncertainty (~1%).

[1.1, 6]GeV²

R_X precision	Run 1 result	$9{\rm fb}^{-1}$	$23{\rm fb}^{-1}$	$50{\rm fb}^{-1}$	$300{\rm fb}^{-1}$
R_K	$0.745 \pm 0.090 \pm 0.036$ [274]	0.043	0.025	0.017	0.007
$R_{K^{*0}}$	$0.69 \pm 0.11 \pm 0.05 \ [275]$	0.052	0.031	0.020	0.008
R_{ϕ}		0.130	0.076	0.050	0.020
R_{pK}	_	0.105	0.061	0.041	0.016
R_{π}	—	0.302	0.176	0.117	0.047

1808.08865

Prospects on Q₅ at Belle II

- Q₅
 - Uncertainty is 0.04 for [4,6]GeV² with 50/ab
 - Can discriminate NP scenario. Confirm or deny NP in $C_{9\mu}^{NP}$

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$Q_5 \ (1 < q^2 < 2.5 \ {\rm GeV^2})$	0.47	0.17	0.054
$Q_5 \ (2.5 < q^2 < 4 \ { m GeV^2})$	0.42	0.15	0.049
$Q_5 \ (4 < q^2 < 6 \ { m GeV^2})$	0.34	0.12	0.040
$Q_5 \ (6 < q^2 < 8 \ { m GeV}^2)$	0.27	0.094	0.030
$Q_5 \ (q^2 > 14.2 \ {\rm GeV^2})$	0.23	0.088	0.027

Summary

- Two hints of Lepton Flavor Universality Violation are found in B decays
 - b→cτν
 - b→sl+l-
- Both are about 4σ effects.
- If this is true, we could observe new physics in early 2020's at both Belle II and upgraded LHCb.
- Exiting time will be stated soon.
 - Belle II phase 3 with VTX detector will start in Jan. 2019
 - Upgraded LHC will start in 2021
- Stay tuned.

backup

Correlation among R's

• Understanding of correlation among R_{κ} , $R_{\kappa*}$ and R_{χ_s} is important to identify NP

$$R_K \simeq 1 + \Delta_+$$

$$R_{K^*} \simeq 1 + p \left(\Delta_- - \Delta_+\right) + \Delta_+,$$

$$R_{X_s} \simeq 1 + \left(\Delta_+ + \Delta_-\right)/2,$$

Prediction

 $R_{X_s} \sim 0.73 \pm 0.07$

$$p = \frac{g_0 + g_{\parallel}}{g_0 + g_{\parallel} + g_{\perp}}.$$

$$\Delta_{\pm} = \frac{2}{|C_9^{\text{SM}}|^2 + |C_{10}^{\text{SM}}|^2} \left[\text{Re} \left(C_9^{\text{SM}} (C_9^{\text{NP}\mu} \pm C_9'^{\mu})^* \right) + \text{Re} \left(C_{10}^{\text{SM}} (C_{10}^{\text{NP}\mu} \pm C_{10}'^{\mu})^* \right) - (\mu \to e) \right].$$

Hiller, Schmartz 1411.4773 Hiller, Nisandzic 1704.05444

Prospects of LFUV in $b \rightarrow$ sll at Belle II

Observables	Belle 0.71 ab^{-1}	Belle II 5 ab^{-1}	Belle II 50 ab^{-1}
$R_K \ (1 < q^2 < 6 \ \mathrm{GeV^2})$	0.28	0.11	0.036
$R_K \; (q^2 > 14.4 \; {\rm GeV^2})$	0.30	0.12	0.036
$R_{K^*} (4m_{\mu}^2 < q^2 < 1 \text{ GeV}^2)$	0.26	0.10	0.032
$R_{K^*} \ (1 < q^2 < 6 \ { m GeV}^2)$	0.26	0.10	0.032
$R_{K^*} \ (q^2 > 14.4 \ {\rm GeV^2})$	0.24	0.92	0.028
$R_{X_s} (4m_{\mu}^2 < q^2 < 1 \text{ GeV}^2)$	0.26	0.10	0.032
$R_{X_s} \ (1 < q^2 < 6 \ { m GeV^2})$	0.32	0.12	0.040
$R_{X_s} (q^2 > 14.4 \text{ GeV}^2)$	0.28	0.11	0.034