Neutrino Mass Hierarchy

Chao Zhang

PA 2018: Interplay between Particle and Astroparticle physics 8-12 Oct 2018, Cincinnati, OH, USA

Outline

□What is "Neutrino Mass Hierarchy (MH)"?

- Recently more popularly (and accurately) known as "Neutrino Mass Ordering (MO)"
- □ Various methods to determine MH
- Status of current and future experiments

Disclaimer:

- Selected overview of topics
- Focus more on experimental particle physics

- Standard Model has three generations of fundamental matter particles (fermions)
- The quark and charged lepton mass show a hierarchical structure (Gen III > Gen II > Gen I)
- Does neutrino mass show the same hierarchy?

Discovery of Neutrino Oscillations

 $\theta_{12} \sim 33^{\circ}$

 $\theta_{23} \sim 45^{\circ}$

 $\theta_{13}^{-0} \sim 9^{0}$

Neutrino oscillation indicates:

- Neutrinos have mass
- Neutrino flavor eigenstates (ν_e, ν_μ, ν_τ) are mixtures of mass eigenstates (ν₁, ν₂, ν₃).
- Neutrino mixing is large

Neutrino mass: known and unknowns

$$P(\nu_l \to \nu_{l'}) = \sin^2 2\theta \cdot \sin^2 \left(1.27 \cdot \frac{\Delta m^2 (eV^2) \cdot L(m)}{E(MeV)} \right)$$

We know the two masssquared differences from neutrino oscillations:

- |Δm²_{atm}| ~ 2.5 x 10⁻³ eV²
- $\Delta m_{sol}^2 \sim 7.5 \times 10^{-5} \text{ eV}^2$
- We don't know the sign of the Δm²_{atm} since the leading order vacuum oscillation formula is only sensitive to sin²(Δm²)
 - Normal Hierarchy (NH):
 - $v_3 > v_2 > v_1$ (v_e is lighter)
 - Inverted Hierarchy (IH):
 v₂ > v₁ > v₃ (v_e is heavier)

We also don't know the absolute neutrino mass, δ_{CP} , or if neutrino is its own anti-particle

Methods Sensitive to Neutrino MH

MH through neutrino mass

X. Qian and P. Vogel, Prog. Part. Nucl. Phys 83, 1 (2015).

- Cosmology, beta-decay, and double betadecay experiments measure different combination of the total mass of neutrinos
 Sensitive to MH:
 - NH: at least <u>one</u> mass eigenstate ~0.05 eV
 - IH: at least two mass eigenstates ~0.05 eV
- MH could have large impact on the future neutrinoless double beta decay experiments

Cosmology is pushing the limit

95%CL upper bounds on $\Sigma_i m_i$ for 7 parameters

Julien Lesgourgues, Neutrino 2018

10/8/2018

 $V_C = \sqrt{2}G_F N_e$

MH through neutrino oscillation (I)

- Neutrino forward scatter with electron when travelling in matter, gaining an additional effective potential ±V_c (minus for antineutrino), causing a phase shift in oscillation that is dependent on MH
- Neutral current scattering doesn't contribute (same phase shift for ν_e, ν_μ, ν_τ)

□ Usually exploited by measuring ν_{μ} ($\bar{\nu}_{\mu}$) to ν_{e} ($\bar{\nu}_{e}$) appearance probability

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} \theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}[\Delta(1-x)]}{(1-x)^{2}} + \alpha J \cos(\Delta \pm \delta) \frac{\sin(\Delta x) \sin[\Delta(1-x)]}{x(1-x)} + \alpha^{2} \cos^{2} \theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(\Delta x)}{x^{2}},$$

 $\Delta \equiv \Delta m_{32}^2 L/(4E) \qquad x \equiv \pm 2\sqrt{2}G_{\rm F}n_e E/\Delta m_{32}^2$ $J \equiv \cos\theta_{13}\sin 2\theta_{13}\sin 2\theta_{12}\sin 2\theta_{23}$

- (1-x) term carries the MH information through matter effect
- Effect is usually opposite for neutrino vs. antineutrino
- Effect is usually larger for higher energy and longer distance
- □ Effect is largely dependent on θ_{23} (due to octant ambiguity)
 - Effect is coupled with size of CP phase

Long Baseline Accelerator Neutrinos

NH: enhance v, suppress anti-v IH: enhance anti-v, suppress v

T₂K

- Long-baseline neutrino experiment (295 km) in Japan from J-PARK (Tokai) to Super-Kamiokande
- Off axis beam peaked at ~600 MeV
 - v: 1.5e21 POT
 - anti-v: 1.1e21 POT
- Observed enhanced v_e event rate
 - Best-fit: NH, -π/2
- **Bayesian posterior** favors NH

SAMPLE

FHC 1Re 0 decay-e

• NH:IH = 0.888: 0.112 $(\Delta \chi^2 \sim 4, \sim 2\sigma)$

 $\delta_{\rm CP} = -\pi/2$

73.8

 $\delta_{\rm CP}=0$

61.6

50.0

62.2

-2

-1

0

- Normal

Inverted

F&C 2o confidence intervals T2K Run1-9c Preliminary

30

25

20F

15

10

5 E

-2dln(L)

75

NOVA

- Long-baseline neutrino experiment (810 km) in US from Fermilab to Ash River (Minnesota)
 - 14 kton segmented liquid scintillator far detector
- Off-axis NUMI beam peaked at ~2 GeV
 - V: 9.5e20 POT
 - Anti-v: 6.9e20 POT
- Observed 58 ν_e in v-mode and 18 ν
 _e in anti-v mode
 Best fit: NH, 0.2π
- Feldman-Cousins approach: prefers NH by 1.8 σ

M. Sanchez, Neutrino 2018

DUNE

 Future long-baseline neutrino experiment (1300 km) in US from Fermilab to SURF (South Dakota)

nts/0.25 GeV

- Four 10 kton liquid argon TPC far detectors
- On-axis wide band beam
 - 1.2 MW upgradable to 2.4 MW
- 2022: installation begins 2026: neutrino beam available
- Order 1000 v_e appearance events in ~7 years of equal running in neutrino and antineutrino mode
- More than 5σ sensitivity to MH for all possible CP phase and θ₂₃ values in 7 years

E. Worcester, Neutrino 2018

13

IPA 2018

Primary cosmic ray (p, He ..) Atmospheric Neutrinos p, He ... SK

- Earth matter effect for upgoing atmospheric v traveling in the mantle or core
- Energy and zenith angle dependent oscillation probabilities
- Matter effect features in both v_{μ} disappearance and v_e appearance
- NH: Resonance features in v
 IH: Resonance features in anti-v

For IH the resonance features appear in anti-v

Super-K, PRD 97, 072001 (2018)

Super-K, Hyper-K

- Super-K operating since 1996
 - 20 kt fiducial water Cerenkov detector
 - 4-generation upgrades
- Rich atmospheric v samples
 - 19 samples in final analysis
- Prefers NH by ~2σ

Hyper-K: 186 kton fiducial mass (~10 x Super-K) Aiming to start construction in FY2019 Operation in FY2026

Super-K, PRD 97, 072001 (2018)

PINGU, KM3NeT / ORCA, INO

- PINGU will be a low-energy extension (~ a few GeV) of IceCube at the South Pole with high-density arrays of optical modules. ORCA is a similar project in the Mediterranean sea. Both have multi megaton mass (ice or water) instrumented.
- INO will be a 50 kton magnetized Iron calorimeter (ICAL) with RPC as the active detector in Southern India
 - Able to identify neutrinos vs. antineutrinos from curvature
- □ Aiming for 3-5 σ sensitivity to MH in 3-5 years (dependent on θ_{23}) with atmospheric neutrinos

Supernova Neutrinos

Supernova neutrino oscillation is also sensitive to MH through matter effect

- Neutronization phase: MSW effect, v_e strongly suppressed in NH
- Accretion phase: collective effect (self-interaction), rich timedependent spectral features

Many detectors in the world, sensitive to different flavors

MH through neutrino oscillation (II)

Precision vacuum oscillation measurement

Usually exploited through $\bar{\nu}_e$ disappearance using reactor neutrinos

 $P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 - \sin^2 2\theta_{13} (\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21}$

 $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E$

JUNO

- Reactor neutrino experiment in China
 - Optimized baseline at 53 km from two large Nuclear Power Plants (36 GW_{th} total)
 - 20 kt liquid scintillator detector
- Expect ~60 reactor v/day, ~4 bkg/day
- Key detector features
 - ~3% energy resolution (~80% photocoverage)
 - <1% energy scale calibration</p>
- Expect data taking 2021
- >3σ sigma sensitivity to MH in 6 years.
 - Can reach >4 σ with 1% constraint on $\Delta m^2_{\mu\mu}$ from future accelerator experiments

Summary

- Neutrino Mass Hierarchy is still a fundamental property that we don't know
- Currently, there is ~2σ preference for Normal Hierarchy from individual experiment: T2K, NOVA, Super-K (combined with reactor θ₁₃ measurement)

• Global analysis can push to $\sim 3\sigma$ hints for NH

- Next generation experiments aim to have >3σ sensitivity to MH in a single experiment (2025-2030)
 - Complementary technologies (long baseline accelerator, atmospheric neutrinos, reactor neutrinos)
- In addition to particle physics, cosmology and supernova neutrinos provide alternative opportunities to determine neutrino MH

Future experiments that will tell us the neutrino masses hierarchy

We would like to be convinced the neutrino mass ordering by consistent results from several different technologies/methods with > 3 σ CL from each exp.

Blennow et al. JHEP 03 028 (2014)

For illustration assumptions in systematics and dates

Stay tuned!