Coherent Elastic Neutrino-Nucleus Scattering

Kate Scholberg, Duke University IPA 2018, Cincinnati October 9, 2018

OUTLINE

- Neutrinos and neutrino interactions
- Coherent elastic neutrino-nucleus scattering (CEvNS)
- Why measure it? Physics motivations
- How to measure CEvNS: reactors & πDAR
- The COHERENT experiment at the SNS
- First light with CsI[TI]
- Future prospects

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$v + A \rightarrow v + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$\gamma + A \rightarrow \gamma + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

Nucleon wavefunctions in the target nucleus are **in phase with each other** at low momentum transfer

For $QR \ll 1$, [total xscn] ~ A² * [single constituent xscn]

A: no. of constituents

\begin{aside}

Literature has CNS, CNNS, CENNS, ...

- I prefer including "E" for "elastic"... otherwise it gets frequently confused with coherent pion production at ~GeV neutrino energies
- I'm told "NN" means "nucleon-nucleon" to nuclear types
- CEvNS is a possibility but those internal Greek letters are annoying

Sevens "...
Sevens "...

\end{aside}

First proposed 44 years ago!

PHYSICAL REVIEW D

Coherent effects of a weak neutral current

VOLUME 9, NUMBER 5

Daniel Z. Freedman[†]

National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering. We will discuss these problems at the end of this note, but first we wish to present the theoretical ideas relevant to the experiments.

> Also: D. Z. Freedman et al., "The Weak Neutral Current and Its Effect in Stellar Collapse", Ann. Rev. Nucl. Sci. 1977. 27:167-207

1 MARCH 1974

Large cross section (by neutrino standards) but hard to observe due to tiny nuclear recoil energies:

The only experimental signature:

> tiny energy deposited by nuclear recoils in the target material

→ WIMP dark matter detectors developed over the last ~decade are sensitive to ~ keV to 10's of keV recoils

The so-called "neutrino floor" (signal!) for DM experiments

The cross section is cleanly predicted in the Standard Model

$$G_V, G_A$$
: SM weak parameters

 $g_A^n = -0.5121.$

vector
$$G_V = g_V^p Z + g_V^n N$$
, \checkmark dominates
axial $G_A = g_A^p (Z_+ - Z_-) + g_A^n (N_+ - N_-)$ \bigstar small for
most
 $g_V^p = 0.0298$
 $g_V^n = -0.5117$
 $g_A^p = 0.4955$ zero for
spin-zero

The cross section is cleanly predicted in the Standard Model

$$\frac{d\sigma}{dT} = \frac{G_F^2 M}{\pi} F^2(Q) \left[(G_V + G_A)^2 + (G_V - G_A)^2 \left(1 - \frac{T}{E_\nu} \right)^2 - (G_V^2 - G_A^2) \frac{MT}{E_\nu^2} \right]$$

E_v: neutrino energy
T: nuclear recoil energy
M: nuclear mass
Q = $\sqrt{(2 \text{ M T})}$: momentum transfer

F(Q): nuclear form factor, <~5% uncertainty on event rate

Need to measure N² dependence of the CEvNS xscn

Why measure CEvNS?

One example: hunting for new interactions "Beyond-the-Standard-Model"

Searching for BSM Physics with CEvNS

A first example: simple counting to constrain **non-standard interactions (NSI)** of

neutrinos with quarks

Davidson et al., JHEP 0303:011 (2004) Barranco et al., JHEP 0512:021 (2005)

"Model-independent" parameterization

$$\mathcal{L}_{\nu H}^{NSI} = -\frac{G_F}{\sqrt{2}} \sum_{\substack{q=u,d\\\alpha,\beta=e,\mu,\tau}} \left[\bar{\nu}_{\alpha} \gamma^{\mu} (1-\gamma^5) \nu_{\beta} \right] \times \left(\varepsilon_{\alpha\beta}^{qL} [\bar{q} \gamma_{\mu} (1-\gamma^5) q] + \varepsilon_{\alpha\beta}^{qR} [\bar{q} \gamma_{\mu} (1+\gamma^5) q] \right)$$

$$\varepsilon's \text{ parameterize new interactions}$$

"Non-Universal": ε_{ee} , $\varepsilon_{\mu\mu}$, $\varepsilon_{\tau\tau}$

Flavor-changing: $\varepsilon_{\alpha\beta}$, where $\alpha \neq \beta$

 \Rightarrow some are quite poorly constrained (~unity allowed)

Signatures of **Beyond-the-Standard-Model Physics** Look for a CEvNS **excess** or **deficit** wrt SM expectation Csl

How to detect CEvNS?

You need a neutrino source and a detector

What do you want for your ν source?

- ✓ High flux
- ✓ Well understood spectrum
- ✓ Multiple flavors (physics sensitivity)
- ✓ Pulsed source if possible, for background rejection
- ✓ Ability to get close
- ✓ Practical things: access, control, ...

Neutrinos from nuclear reactors

- v_e -bar produced in fission reactions (one flavor)
- huge fluxes possible: ~2x10²⁰ s⁻¹ per GW
- several CEvNS searches past, current and future at reactors, but recoil energies<keV and backgrounds make this very challenging

Both cross-section and maximum recoil energy increase with neutrino energy:

Want energy as large as possible while satisfying coherence condition: $Q \lesssim \frac{1}{R}$ (<~ 50 MeV for medium A)

from Neutrino 2018:

- 17 m from core
- 4 kg Ge PPC
- ~300 eV threshold

CONUS reports first hint of reactor CEvNS

Rate compariso	on (all d	letectors):	
	counts	counts/(d·kg) (*)]
reactor OFF (114 kg*d)	582		1
reactor ON (112 kg*d)	653		
ON-OFF (exposure corr.)	84	0.94	
Significance	2.4 σ	2.3 σ	Some systematics

W. Maneschg, Nu2018

Reactor CEvNS Efforts Worldwide

Experiment	Technology	Location	
CONNIE	Si CCDs	Brazil	
CONUS	HPGe	Germany	
MINER	Ge/Si cryogenic	USA	
Nu-Cleus	Cryogenic CaWO ₄ , Al ₂ O ₃ calorimeter array	Europe	
∿GEN	Ge PPC	Russia	
RED-100	LXe dual phase	Russia	
Ricochet	Ge, Zn bolometers	France	kin herjig Birge cent
TEXONO	p-PCGe	Taiwan	

Many novel low-background, low-threshold technologies

See H. Wong, Nu2018 talk for a more detailed survey

Stopped-Pion (\piDAR) Neutrinos

2-body decay: monochromatic 29.9 MeV v_{μ} PROMPT

 $\mu^+ \to e^+$ ν_e

3-body decay: range of energies between 0 and m_/2 DELAYED (2.2 μs)

Spallation Neutron Source

Oak Ridge National Laboratory, TN

552

Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

The neutrinos are free!

Time structure of the SNS source

60 Hz pulsed source

Now, *detecting* the tiny kick of the neutrino...

This is just like the tiny thump of a WIMP;

we benefit from the last few decades of low-energy nuclear recoil detectors

The COHERENT collaboration

http://sites.duke.edu/coherent

COHERENT CEvNS Detectors

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)
Csl[Na]	Scintillating crystal	14.6	19.3	6.5
Ge	HPGe PPC zap	6	22	<5
LAr	Single-phase _{flast}	22	29	20
Nal[TI]	Scintillating crystal	185*/ 2000	28	13

Multiple detectors for N² dependence of the cross section

Expected recoil energy distribution

First light at the SNS with 14.6-kg Csl[Na] detector

D. Akimov^{1,2}, J. B. Albert³, P. An⁴, C. Awe^{4,5}, P. S. Barbeau^{4,5}, B. Becker⁶, V. Belov^{1,2}, A. Brown^{4,7}, A. Bolozdy... + See all authors and affiliations

Science 03 Aug 2017: eaao0990 DOI: 10.1126/science.aao0990

D. Akimov et al., Science, 2017

http://science.sciencemag.org/content/early/2017/08/02/science.aao0990

Neutrino non-standard interaction constraints for current CsI data set:

*CHARM constraints apply only to heavy mediators

What's Next for COHERENT?

S.

One measurement so far! Want to map out N² dependence

Neutrino Alley Deployments: current & near future

COHERENT CEvNS Detector Status and Farther Future

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)	Data-taking start date	Future
Csl[Na]	Scintillating crystal	14.6	20	6.5	9/2015	Finish data-taking
Ge	HPGe PPC	6	22	5	2019	~2.5-kg detectors
LAr	Single- phase	22	29	20	12/2016, upgraded summer 2017	Expansion to ~1 tonne scale
Nal[TI]	Scintillating crystal	185*/ 2000	28	13	*high-threshold deployment summer 2016	Expansion to 2.5 tonne, up to 9 tonnes

+ concepts for other targets

Summary

- CEvNS:
 - large cross section, but tiny recoils, α N²
 - accessible w/low-energy threshold detectors, plus extra oomph of stopped-pion neutrino source
- First measurement by COHERENT Csl[Na] at the SNS
- Meaningful bounds on beyond-the-SM physics

- It's just the beginning....
- Multiple targets, upgrades and new ideas in the works!
- Other CEvNS experiments at reactors are joining the fun (CONUS, CONNIE, MINER, RED, Ricochet, Nu-cleus...)

Extras/Backups

Reactor vs stopped-pion for CEvNS

Source	Flux/ v's per s	Flavor	Energy	Pros	Cons
Reactor	2e20 per GW	nuebar	few MeV	• huge flux	 lower xscn require very low threshold CW
Stopped pion	1e15	numu/ nue/ nuebar	0-50 MeV	 higher xscn higher energy recoils pulsed beam for bg rejection multiple flavors 	 lower flux potential fast neutron in-time bg

April 25, 2018

COHERENT Collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering

Search

Akimov, D; Albert, J.B.; An, P.; Awe, C.; Barbeau, P.S.; Becker, B.; Belov, V.; Blackston, M.A.; Bolozdynya, A.; Brown, A.; Burenkov, A.; Cabrera-Palmer, B.; Cervantes, M.; Collar, J.I.; Cooper, R.J.; Cooper, R.L.; Cuesta, C.; Daughhetee, J.; Dean, D.J.; del Valle Coello, M.; Detwiler, J.; D'Onofrio, M.; Eberhardt, A.; Efremenko, Y.; Elliott, S.R.; Etenko, A.; Fabris, L.; Febbraro, M.; Fields, N.; Fox, W., Triangle Universities Nuclear Laboratory Uribarri, A.; Green, M.P.; Hai, M.; Heath, M.R.; Hedges, S.; Hornback, D.; Hossbach, T.M.; Mueler, Laboratory Kaemingk, M.; Kaufman, L.J.; Klein, S.R.; Khromov, A.; Ki, S.; Konovalov, A.; Kovalenko, A.; Kremer, M.; Kumpan, A.; Leadbetter, C.; Li, L.; Lu, W.; Mann, K.; Markoff, D.M.; Melikyan, Y.; Miller, K.; Moreno, H.; Mueller, P.E.; Naumov, P.; Newby, J.; Orrell, J.L.; Overman, C.T.; Parno, D.S.; Penttila, S.; Perumpilly, G.; Radford, D.C.; Rapp, R.; Ray, H.; Raybern, J.; Reyna, D.; Pach, G.C.; Rimal, D.; Rudik, D.; Salvat, D.J.; Scholberg, K.; Scholz, B.; Sinev, G.; Snow, W.M.; Sosnovtsev, V.; Shakirov, A.; Suchyta, S.; Suh, B.; Tayloe, R.; Thornton, R.T.; Tolstukhin, I.; Vanderwerp, J.; Varner, R.L.; Virtue, C.J.; Wan, Z.; Yoo, J.; Yu, C.-H.; Zawada, A.; Zderic, A.; Zettlemoyer, J.

Release of COHERENT Collaboration data associated with the first observation of coherent elastic neutrino-nucleus scattering (CEvNS), as published in Science (DOI: 10.1126/science.aao0990) and also available as arXiv:1708.01294[nucl-ex].

This data set should enable researchers to extend the study of CEvNS as desired. Future COHERENT Collaboration results will have similar data releases.

Available for theorists

"pyCEvNS" collaboration

Q Upload

Dataset Open Access

Communities

Stopped-Pion Neutrino Sources Worldwide

Comparison of pion decay-at-rest v sources

The SNS has large, extremely clean stopped-pion v flux

0.08 neutrinos per flavor per proton on target

Backgrounds

Usual suspects:

- cosmogenics
- ambient and intrinsic radioactivity
- detector-specific noise and dark rate

Neutrons are especially not our friends*

Steady-state backgrounds can be *measured* off-beam-pulse ... in-time backgrounds must be carefully characterized

A "friendly fire" in-time background: Neutrino Induced Neutrons (NINs)

$$v_{e} + {}^{208}Pb \rightarrow {}^{208}Bi^{*} + e^{-} CC$$

$$1n, 2n \text{ emission}$$

$$v_{x} + {}^{208}Pb \rightarrow {}^{208}Pb^{*} + v_{x} NC$$

$$1n, 2n, \gamma \text{ emission}$$

- potentially non-negligible background from shielding
- requires careful shielding design
- large uncertainties (factor of few) in cross-section calculation
- [Also: a signal in itself, e.g, HALO SN detector]

Projected future sensitivities for NSI

Combination of targets improves sensitivity

Generalized mass ordering degeneracy in neutrino oscillation experiments

Pilar Coloma¹ and Thomas Schwetz²

Phys.Rev. D94 (2016) no.5, 055005, Erratum: Phys.Rev. D95 (2017) no.7, 079903 P. Coloma et al., JHEP 1704 (2017) 116

> If you allow for NSI, exists in determining mass ordering w/ LBL experiments: "LMA-Dark"

 $\Delta m_{31}^2
ightarrow -\Delta m_{31}^2 + \Delta m_{21}^2 = -\Delta m_{32}^2$ $(\epsilon_{ee}-\epsilon_{\mu\mu})
ightarrow -(\epsilon_{ee}-\epsilon_{\mu\mu})-2\,,$ $(\epsilon_{\tau\tau} - \epsilon_{\mu\mu}) \rightarrow -(\epsilon_{\tau\tau} - \epsilon_{\mu\mu}),$ $\epsilon_{\alpha\beta} \rightarrow -\epsilon^*_{\alpha\beta} \quad (\alpha \neq \beta)$

47

Generalized mass ordering degeneracy in neutrino oscillation experiments

Pilar Coloma¹ and Thomas Schwetz²

Phys.Rev. D94 (2016) no.5, 055005, Erratum: Phys.Rev. D95 (2017) no.7, 079903 P. Coloma et al., JHEP 1704 (2017) 116

> CEvNS measurements can place significant constraints to resolve the LMA-D ambiguity if SM rate is measured

OR, could *confirm an NSI signature* observed by DUNE

A COHERENT enlightenment of the neutrino Dark Side

Pilar Coloma,^{1, *} M. C. Gonzalez-Garcia,,^{2,3,4,†} Michele Maltoni,,^{5,‡} and Thomas Schwetz^{6,§} Phys.Rev. D96 (2017) no.11, 115007

First COHERENT results are already disfavoring LMA-D

Future COHERENT results will fully exclude LMA-D

Another phenomenological analysis, making use of spectral fit:

COHERENT constraints on

nonstandard neutrino interactions

Jiajun Liao and Danny Marfatia

arXiv:1708.04255

SM weak charge

Effective weak charge in presence of light vector mediator Z'

- Q^2 -dependence \rightarrow affects recoil spectrum
- 2 parameters: g, M₇,

Black: $v_{\mu} + v_{\mu}$ -bar + v_{e}

Solid: NSI w/ M₂ = 10 MeV, g=10⁻⁴

Neutrino magnetic moment

Signature is distortion at low recoil energy E

More in Juan's talk

Nuclear physics with CEvNS

If systematics can be reduced to ~ few % level, we can start to explore nuclear form factors

P. S. Amanik and G. C. McLaughlin, J. Phys. G 36:015105 K. Patton et al., PRC86 (2012) 024612

$$\frac{d\sigma}{dT} = \frac{G_F^2 M}{2\pi} \frac{Q_W^2}{4} F^2(Q) \left(2 - \frac{MT}{E_\nu^2}\right) <$$

Form factor: encodes information about nuclear (primarily neutron) distributions

53

Fit recoil *spectral shape* to determine the F²(Q) moments (requires very good energy resolution, good systematics control)

Example: tonne-scale experiment at πDAR source

Sensitivity to R_n in the recoil spectrum shape

M. Cadeddu, C. Giunti, Y. F. Li, and Y. Y. Zhang. "Average CsI neutron density distribution from COHERENT data." (2017). 1710.02730.

- Fit to neutron radius w/ ~18% uncertainty, but does not handle bin-by-bin correlation of systematics
- Also some info on neutron skin

More in Rex's talk

Neutrinos from core-collapse supernovae

When a star's core collapses, ~99% of the gravitational binding energy of the proto-nstar goes into v's of *all flavors* with ~tens-of-MeV energies

(Energy *can* escape via v's)

Mostly v- \overline{v} pairs from proto-nstar cooling

Timescale: *prompt* after core collapse, overall $\Delta t \sim 10$'s of seconds

Supernova neutrinos in tonne-scale DM detectors

