Testing Baryogenesis / Leptogenesis at Present & Future Colliders

Andrew J. Long University of Michigan – LCTP @ University of Cincinnati – IPA 2018 October 10, 2018

3 cornerstone problems in cosmology

Baryogenesis. An event that took place in the early universe that created the excess of matter (baryons) over antimatter (antibaryons).

Leptogenesis. A class of models in which the asymmetry is first generated in leptons & then transferred to baryons

high-scale (thermal) leptogenesis low-scale (ARS) leptogenesis Dirac leptogenesis gravitational leptogenesis CPPT leptogenesis Higgs relaxation leptogenesis B-L string leptogenesis

. . .

electroweak baryogenesis local electroweak baryogenesis cold electroweak baryogenesis GUT baryogenesis Affleck-Dine baryogenesis spontaneous baryogenesis post-sphaleron baryogenesis magnetic-assisted baryogenesis dissipative baryogenesis warm baryogenesis cloistered baryogenesis Planck baryogenesis WIMPy baryogenesis cosmic string baryogenesis axion domain wall baryogenesis new GUT baryogenesis PBH baryogenesis supersonic baryogenesis

what does it collide?	where is it located?	what is it called?	what is the energy?	
	China	CEPC	E = 90 GeV	
e⁺e⁻	Europe	FCC-ee	E = 250 GeV → study Higgs E = 350 GeV	
	Japan	ILC	ightarrow study top	
рр	China Europe	SppC FCC-hh	E =100 TeV → discovery	

What we know and what we don't know about the Higgs

Large Hadron Collider experiment

$\mid m_{h} \simeq 125.09 \pm 0.24\, GeV/c^{2}$

$\mathbf{m_h} \simeq \mathbf{125.09} \pm \mathbf{0.24\,GeV/c^2}$

Electroweak Phase Transition. How does the background Higgs field move from zero in the early universe to its nonzero value today? (T ~ 100 GeV, t ~ 10 ps)

Electroweak baryogenesis. The creation of the matter-antimatter asymmetry of the universe at the electroweak phase transition.

Studying the Higgs @ Future Colliders

How can we learn about the electroweak phase transition?

Effect on Higgs couplings

$$\lambda_3 = \sum_{h \to \dots \to h}^{h}$$

PRO: Directly related to the shape of themeasure. Target ofHiggs potential (V''').FCC-hh & SppC.

CON: Very challenging to

Higgs Factories – precision Higgs measurements

Lepton colliders provide "clean" environment to study Higgs physics.

At E = 250 GeV, the production of Higgs + Z-boson is optimized.

Precision measurements of Higgs-Z-Z coupling at the sub-percent level!

Proposed Higgs factories:

- → FCC-ee (Europe / CERN)
- → CEPC (China)
- → ILC (Japan)

figure: ILCTDR, 1306.6352

Precision Higgs measurements

Projected sensitivities to various Higgs couplings at current & future colliders:

	current	HL-LHC	CEPC	ILC	FCC-ee	FCC-hh
hZZ	27%	7%	0.25%	0.25%	0.15%	> -
Γ(h→γγ)	20%	8%	4%	-	1.5%	-
hhh	-	[-0.8 <i>,</i> 7.7] 95% CL	43%	27%	43%	10%

Assumptions & references:

hZZ current = 5 fb⁻¹ at \sqrt{s} = 7 TeV & 20 fb⁻¹ at 8 TeV (1606.02266) hZZ @ HL-LHC = 3000 fb⁻¹ at \sqrt{s} = 14 TeV (1307.7135, CMS) hZZ @ CEPC = 5000 fb⁻¹ at \sqrt{s} = 250 GeV (pre-CDR) hZZ @ ILC = 2000 fb⁻¹ at \sqrt{s} = 250 GeV (1506.05992) hZZ @ FCC-ee = 2600 fb⁻¹ at \sqrt{s} = 250 GeV (1601.0640) hhh @ HL-LHC = 3000 fb⁻¹ at \sqrt{s} = 14 TeV (ATL-PHYS-PUB-2017-001, hh->bbγγ) hhh @ ILC = 4000 fb⁻¹ at \sqrt{s} = 500 GeV (1506.05992, e⁺e⁻>Zhh, hh->bbbb & bbWW) hhh @ FCC-hh = 30000 fb⁻¹ at \sqrt{s} = 100 TeV (1606.09408) hhh @ CEPC/FCC-ee = 5000 fb⁻¹ at \sqrt{s} = 240 GeV + 1700 fb⁻¹ at \sqrt{s} = 350 GeV (1711.03978)

17 Time to reach design sensitivity depends on run plan (not yet determined).

Phase transitions studies are a big industry ...

Model	References		
SM + EW-singlet Scalar	Espinosa & Quiros, 1993; Benson, 1993; Choi & Volkas, 1993; McDonald, 1994; Vergara, 1996; Branco, Delepine, Emmanuel-Costa, & Gonzalez, 1998; Ham, Jeong, & Oh, 2004; Ahriche, 2007; Espinosa & Quiros, 2007; Profumo, Ramsey-Musolf, & Shaughnessy, 2007; Noble & Perelstein, 2007; Espinosa, Konstandin, No, & Quiros, 2008; Ashoorioon & Konstandin, 2009; Das, Fox, Kumar, & Weiner, 2009; Espinosa, Konstandin, & Riva, 2011; Chung & AL, 2011; Wainwright, Profumo, & Ramsey-Musolf, 2012; Barger, Chung, AL, & Wang, 2012; Huang, Shu, Zhang, 2012; Chung, AL, & Wang, 2012; Profumo, Ramsey-Musolf, Wainwright, & Winslow, 2014; Katz & Perelstein, 2014; Jiang, Bian, Huang, Shu, 2015; Huang & Li 2015; Huang, AL, & Wang, 2016; Cline, Kainulainen, Tucker-Smith, 2017; Kurup & Perelstein, 2017; Chen, Kozaczuk, & Lewis, 2017		
SM + EW-doublet Scalar	Davies, Froggatt, Jenkins, & Moorhouse, 1994; Huber, 2006; Fromme, Huber, & Seniuch, 2006; Cline, Kainulainen, & Trott, 2011; Kozhushko & Skalozub, 2011;		
SM + EW-triplet Scalar	Patel, Ramsey-Musolf, 2012; Patel, Ramsey-Musolf, Wise, 2013; Huang, Gu, Yin, Yu, Zhang 2016		
SM + Chiral Fermions	Carena, Megevand, Quiros, Wagner, 2005; Huang, AL, & Wang, 2016		
MSSM	Carena, Quiros, & Wagner, 1996; Delepine, Gerard, Gonzales Felipe, & Weyers, 1996; Cline & Kainulainen, 1996; Laine & Rummukainen, 1998; Cohen, Morrissey, & Pierce,; Carena, Nardini, Quiros, & Wagner, 2012;		
NMSSM / nMSSM / μνSSM	Pietroni, 1993; Davies, Froggatt, & Moorhouse, 1995; Huber & Schmidt, 2001; Ham, Oh, K Yoo, & Son, 2004; Menon, Morrissey, & Wagner, 2004; Funakubo, Tao, & Toyoda, 2005; Huber, Kontandin, Prokopec, & Schmidt, 2006; Chung, AL, 2010, Huang, Kang, Shu, Wu, Yang, 2014; Bian, Guo, Shu (2017)		
EFT-like Approach (H^6 operator)	Grojean, Servant, Wells, 2005; Chung, AL, & Wang, 2012; Huang, Gu, Yin, Yu, Zhang 2015; Huang, Joglekar, Li, Wagner, 2015; Huang, Wan, Wang, Cai, Zhang 2016; Huang, Gu, Yin, Yu, Zhang 2016; Cao, F.P. Huang, Xie, Zhang (2017)		

Example: an especially challenging scenario

Consider the theory:

SM + spin-0, colorless, uncharged particle (aka., real scalar singlet)

The new particle does not interact via the SM forces (strong, weak, EM)

- → difficult to produce and detect at colliders
- → (dark matter candidate if stable)

The new particle interacts with the Higgs boson

- → induces 1st order phase transition
- → affects Higgs couplings

Higgs-singlet mixing:

 $\langle H \rangle = (0, v/\sqrt{2})$ and $\langle \phi_s \rangle = v_s$ $\sin 2\theta = \frac{4v(a_{hs} + \lambda_{hs}v_s)}{M_h^2 - M_s^2}$ hhh coupling (see e.g., Profumo, Ramsey-Musolf, Wainwright, & Winslow, 2014)

$$\lambda_3 \equiv g_{hhh} = (6\lambda_h v) \cos^3 \theta + (6a_{hs} + 6\lambda_{hs} v_s) \sin \theta \cos^2 \theta + (6\lambda_{hs} v) \sin^2 \theta \cos \theta + (2a_s + 6\lambda_s v_s) \sin^3 \theta$$

EWPT is 1st order

even hZZ measurements alone are a powerful test of PT! (including also hhh is better)

Implications for the matter excess

Electroweak baryogenesis requires a *strongly* 1st order electroweak phase transition.

Higgs precision may provide first clues to solve: what is the origin of matter-antimatter asymmetry?

Implications for gravitational waves

Bubble collisions & fluid motion create a gravitational wave "noise."

GW spectrum set by bubble size at the time of collision.

→ Falls right into the sensitivity bands of proposed space-based interferometers!

Implications for gravitational waves

Models within reach of HL-LHC are also within reach of LISA!

Resonant di-Higgs production

$$pp \to h_2 \to h_1 h_1 \to 4\tau \text{ or } b\overline{b}\gamma\gamma$$

- A pp collider can test for the new singlet scalar (h₂) directly.
- Di-Higgs production is resonantly enhanced for m₂ > 2m_h.
- If the new scalar gives rise to a 1st order phase transition, then a 100 TeV pp collider (FCC-hh or SppC) should be able to discover it.

range = consistent w/ 1^{st} order EWPT

Non-resonant di-singlet production

$$pp \to h_2 h_2 \to 4W \to 2j2l^{\pm}l'^{\mp} 3\nu$$

all colored points = 1st order PT

Falsifying High-Scale LG and Testing Low-Scale LG at Colliders

Leptogenesis. A class of models of baryogenesis in which the matter-antimatter asymmetry is first generated in leptons & then transferred to baryons (usually via the EW sphaleron).

Falsifying high-scale (thermal) leptogenesis

If a collider experiment finds evidence for L-number violation at the TeV scale, then these L-violating interactions should have washed out the L asymmetry.

Testing low-scale (ARS) leptogenesis

If $M_N \sim GeV$ then the lepton asymmetry may arise at the weak scale from CP-violating neutrino flavor oscillations.

Conclusions

Some of the most compelling models of baryogenesis will be tested and falsified by nextgeneration collider experiments.