# Constraining Dark Matter with the CMB

Kimberly Boddy Johns Hopkins University

IPA, Cincinnati

10 October 2018





#### Planck 2015

#### **Temperature anisotropy**



#### **Polarization anisotropy**



ESA and Planck Collaboration

## Planck 2015



ESA and Planck Collaboration

## **Baryon Acoustic Oscillations**



W. Hu, http://background.uchicago.edu/~whu/index.html

### **Baryon Acoustic Oscillations**



W. Hu, http://background.uchicago.edu/~whu/index.html

How does this picture change with non-gravitational dark matter interactions?

#### Search Channels



in particle physics

ColliderIndirect detectionDirect detectionin cosmologyEnergy injectionMomentum transfer

#### Search Channels



# **Energy Injection**



Padmanabhan and Finkbeiner (2005)

see also Galli+ (2009, 2013), Finkbeiner (2011), Slatyer (2016)

# **Energy Injection**



see also Galli+ (2009, 2013), Finkbeiner (2011), Slatyer (2016)

## **CMB** Annihilation Limits



~20% improvement over Planck 2015

Planck Collaboration (2018)

## **CMB** Annihilation Limits



~20% improvement over Planck 2015

Planck Collaboration (2018)

For decay, see Poulin+ (2017), Slatyer and Wu (2017)

### Search Channels





**DM-baryon scattering:** 

- → heat exchange
- → momentum exchange (drag force)
- → suppression at small scales



H, He nuclei
DM baryon scattering:
→ heat exchange
→ momentum exchange
(drag force)
→ suppression at
small scales



H, He nuclei
DM baryon scattering:
→ heat exchange
→ momentum exchange
(drag force)
→ suppression at
small scales

# Particle physics input?



#### Interactions via heavy mediators



Fan et al. (2010), Fitzpatrick et al. (2013), Anand et al. (2014), Dent et al. (2015)

Observables

 $\mathcal{O} \sim \left| \vec{v}^{\perp} \right|^{\alpha} \left| \vec{q} \right|^{\beta}$ 

- DM and nucleon spins
- Momentum transfer (MT)  $|\vec{q}| \sim |\vec{v}|(1 \cos \theta)^{1/2}$
- Perpendicular velocity  $\vec{v}^{\perp}(\vec{v}, \vec{q}) \rightarrow \vec{v}^{\perp} \cdot \vec{q} = 0$

Fan et al. (2010), Fitzpatrick et al. (2013), Anand et al. (2014), Dent et al. (2015)

Observables

 $\mathcal{O} \sim \left| \vec{v}^{\perp} \right|^{\alpha} \left| \vec{q} \right|^{\beta}$ 

- DM and nucleon spins
- Momentum transfer (MT)  $|\vec{q}| \sim |\vec{v}|(1 \cos \theta)^{1/2}$
- Perpendicular velocity  $\vec{v}^{\perp}(\vec{v},\vec{q}) \rightarrow \vec{v}^{\perp} \cdot \vec{q} = 0$

 $\sigma_{MT}(v) = \sigma_0 v^{2(\alpha+\beta)} \times (v \text{-dependent correction for He})$ 

Fan et al. (2010), Fitzpatrick et al. (2013), Anand et al. (2014), Dent et al. (2015)

Observables

 $\mathcal{O} \sim \left| \vec{v}^{\perp} \right|^{\alpha} \left| \vec{q} \right|^{\beta}$ 

- DM and nucleon spins
- Momentum transfer (MT)  $|\vec{q}| \sim |\vec{v}|(1 \cos \theta)^{1/2}$
- Perpendicular velocity

$$\vec{v}^{\perp}(\vec{v},\vec{q}) \rightarrow \vec{v}^{\perp} \cdot \vec{q} = 0$$

 $\sigma_{MT}(v) = \sigma_0 v^{2(\alpha+\beta)} \times (v \text{-dependent correction for He})$  **DM response** nuclear response

Fan et al. (2010), Fitzpatrick et al. (2013), Anand et al. (2014), Dent et al. (2015)

Observables

 $\mathcal{O} \sim \left| \vec{v}^{\perp} \right|^{\alpha} \left| \vec{q} \right|^{\beta}$ 

- DM and nucleon spins
- Momentum transfer (MT)  $|\vec{q}| \sim |\vec{v}|(1 \cos \theta)^{1/2}$
- Perpendicular velocity  $\vec{v}^{\perp}(\vec{v},\vec{q}) \rightarrow \vec{v}^{\perp} \cdot \vec{q} = 0$

 $\sigma_{MT}(v) = \sigma_0 v^{2(\alpha+\beta)} \times (v \text{-dependent correction for He})$  **DM response nuclear response** 

CMB is sensitive to rate of momentum transfer (and rate of heat transfer).

rate ~ (cross section)/mass x (number density of target) x (reduced mass)













Spectral distortions (Ali-Haïmoud et al, 2015) COBE+2dF (Chen et al., 2002) Planck 2013 (Dvorkin et al., 2014)



Spectral distortions (Ali-Haïmoud et al, 2015) COBE+2dF (Chen et al., 2002) Planck 2013 (Dvorkin et al., 2014)

**KB** and Gluscevic (2017, 2018)



Spectral distortions (Ali-Haïmoud et al, 2015) COBE+2dF (Chen et al., 2002) Planck 2013 (Dvorkin et al., 2014)

**KB** and Gluscevic (2017, 2018)

Li, Gluscevic, KB, Madhavacheril (2018)













 $\sigma_{MT}(v) = \sigma_0 v^n$ 

 Expect small (large) cross section at early (late) times, but relevant quantity is rate of momentum transfer

 $\sigma_{MT}(v) = \sigma_0 v^n$ 

• Expect small (large) cross section at early (late) times, but relevant quantity is rate of momentum transfer



 $\sigma_{MT}(v) = \sigma_0 v^n$ 

• Expect small (large) cross section at early (late) times, but relevant quantity is rate of momentum transfer



 $\sigma_{MT}(v) = \sigma_0 v^n$ 

• Expect small (large) cross section at early (late) times, but relevant quantity is rate of momentum transfer



 $\sigma_{MT}(v) = \sigma_0 v^n$ 

- Expect small (large) cross section at early (late) times, but relevant quantity is rate of momentum transfer
- For EFT models, could assume

$$|\vec{V}_{\rm DM} - \vec{V}_b|^2 \ll \bar{v}_{\rm th}^2$$



 $\sigma_{MT}(v) = \sigma_0 v^n$ 

- Expect small (large) cross section at early (late) times, but relevant quantity is rate of momentum transfer
- For EFT models, could assume

$$|\vec{V}_{\rm DM} - \vec{V}_b|^2 \ll \bar{v}_{\rm th}^2$$

 Large bulk velocities lead to nonlinearities

Dvorkin, Blum, Kamionkowski (2014)



 $\sigma_{MT}(v) = \sigma_0 v^n$ 

- Expect small (large) cross section at early (late) times, but relevant quantity is rate of momentum transfer
- For EFT models, could assume

$$|\vec{V}_{\rm DM} - \vec{V}_b|^2 \ll \bar{v}_{\rm th}^2$$

- Large bulk velocities lead to
   nonlinearities
   Dvorkin, Blum, Kamionkowski (2014)
- Introduce new treatment of bulk velocities































SN1987A: Chang, Essig, and McDermott (2018) SLAC: Prinz et al. (1998) Stellar: Vogel and Redondo (2014)

Kovetz, Poulin, Gluscevic, **KB**+ (1807.11482)



SN1987A: Chang, Essig, and McDermott (2018) SLAC: Prinz et al. (1998) Stellar: Vogel and Redondo (2014)

Kovetz, Poulin, Gluscevic, **KB**+ (1807.11482)

#### Conclusions

- Cosmological observables provide a rich foundation to search for particle dark matter interactions
- Highly complementary to direct and indirect detection searches



• CMB constrains parameter space needed to explain millicharge interpretation of EDGES signal ( $f_{\chi} \leq 0.4\%$ )