## 21-cm cosmology and connections to dark sectors

Jordan Mirocha (McGill)



#### Outline

I.What is the global 21-cm signal? What is weird about the EDGES signal?

II.What are the leading ideas for the anomalous depth of the EDGES signal?

III.What does the EDGES signal tell us about galaxy formation? (*How does our ignorance about galaxy formation limit DM inference?*)



#### Part I: The Global 21-cm Signal\*

<sup>\*</sup>Madau et al. (1997), Shaver et al. (1999)

#### 21-cm Physics



#### 21-cm Physics



#### 21-cm Physics





#### "Differential brightness temperature":

$$\delta T_b \simeq 27 \ \overline{x}_{\rm H\ I} (1+\delta) \left(\frac{1+z}{10}\right)^{1/2} \left(1 - \frac{T_{\rm CMB}}{T_{\rm S}}\right) \ {\rm mK}$$



#### "Differential brightness temperature":

$$\delta T_b \simeq 27 \,\overline{x}_{\rm H\ I} (1+\delta) \left(\frac{1+z}{10}\right)^{1/2} \left(1 - \frac{T_{\rm CMB}}{T_{\rm S}}\right) \,\,{\rm mK}$$

















Made w/ CosmoRec (Chluba & Thomas)







# So why is there a signal beyond ~30 MHz?















### Enter: EDGES



**Observing site: Murchison Radio Observatory (W. Australia)** 



See also, e.g., Bowman & Rogers (2010), Monsalve et al. (2017)







#### EDGES: Key Features

#### EDGES: Key Features





Requires temperatures colder than those predicted in ~adiabatically cooling IGM

#### Independent Work in Progress









### Part II: Explanations for the anomalous EDGES amplitude

$$\delta T_b \simeq 27 \ \overline{x}_{\rm H\ I} (1+\delta) \left(\frac{\Omega_{b,0} h^2}{0.023}\right) \left(\frac{0.15}{\Omega_{m,0} h^2} \frac{1+z}{10}\right)^{1/2} \left(1 - \frac{T_{\rm R}}{T_{\rm S}}\right) \ {\rm mK}$$

#### **Q.** How to amplify signal by a factor of 2-3?

$$\delta T_b \simeq 27 \ \overline{x}_{\rm H\ I} (1+\delta) \left(\frac{\Omega_{b,0} h^2}{0.023}\right) \left(\frac{0.15}{\Omega_{m,0} h^2} \frac{1+z}{10}\right)^{1/2} \left(1 - \frac{T_{\rm R}}{T_{\rm S}}\right) \ {\rm mK}$$

#### Q. How to amplify signal by a factor of 2-3?

- 1. Decrease T<sub>S</sub> via baryon-DM interactions.
  - Barkana, Munoz & Loeb, Fialkov et al., Berlin et al., Slatyer & Wu, Kovetz+

Note: inclusion in these lists does not imply authors' endorsement of the solution!

$$\delta T_b \simeq 27 \ \overline{x}_{\rm H\ I} (1+\delta) \left(\frac{\Omega_{b,0} h^2}{0.023}\right) \left(\frac{0.15}{\Omega_{m,0} h^2} \frac{1+z}{10}\right)^{1/2} \left(1 - \frac{T_{\rm R}}{T_{\rm S}}\right) \ {\rm mK}$$

#### Q. How to amplify signal by a factor of 2-3?

- 1. Decrease T<sub>S</sub> via baryon-DM interactions.
  - Barkana, Munoz & Loeb, Fialkov et al., Berlin et al., Slatyer & Wu, Kovetz+
- 2. Increase  $T_R$  via DM decay or synchrotron from BHs, galaxies.
  - Feng & Holder, Ewall-Wice et al., Fraser et al., Mirocha & Furlanetto, Sharma

Note: inclusion in these lists does not imply authors' endorsement of the solution!

$$\delta T_b \simeq 27 \ \overline{x}_{\rm H\ I} (1+\delta) \left(\frac{\Omega_{b,0} h^2}{0.023}\right) \left(\frac{0.15}{\Omega_{m,0} h^2} \frac{1+z}{10}\right)^{1/2} \left(1 - \frac{T_{\rm R}}{T_{\rm S}}\right) \ {\rm mK}$$

#### Q. How to amplify signal by a factor of 2-3?

- 1. Decrease T<sub>S</sub> via baryon-DM interactions.
  - Barkana, Munoz & Loeb, Fialkov et al., Berlin et al., Slatyer & Wu, Kovetz+
- 2. Increase  $T_R$  via DM decay or synchrotron from BHs, galaxies.
  - Feng & Holder, Ewall-Wice et al., Fraser et al., Mirocha & Furlanetto, Sharma
- 3. Alter the cosmology.
  - McGaugh, Costa et al., Hill et al.

#### Note: inclusion in these lists does not imply authors' endorsement of the solution!
#### DM as a coolant

1 + *z* 



#### DM as a coolant

1 + *z* 

 Initial suggestion of milli-charged DM from Barkana (2018).



#### DM as a coolant

1 + *z* 

- Initial suggestion of milli-charged DM from Barkana (2018).
- Revision to f<sub>DM</sub> < 0.1 by Munoz and Loeb based on galactic B-field arguments.



#### Further Revision of DM cooling



Berlin et al. (1803.02804), see also see also Boddy et al. (1808.00001), Kovetz et al. (1807.11482)

#### Further Revision of DM cooling



Berlin et al. (1803.02804), see also see also Boddy et al. (1808.00001), Kovetz et al. (1807.11482)





 Excess in the z=0 radio background reported by ARCADE-2 (left) and LWA (Dowell & Taylor).



- Excess in the z=0 radio background reported by ARCADE-2 (left) and LWA (Dowell & Taylor).
- Only ~10% from high-z needed to cause EDGES-like signal (Feng & Holder). Maybe this isn't crazy?



- Excess in the z=0 radio background reported by ARCADE-2 (left) and LWA (Dowell & Taylor).
- Only ~10% from high-z needed to cause EDGES-like signal (Feng & Holder). Maybe this isn't crazy?
- If produced by BHs, require efficient accretion (f<sub>edd</sub>~1, f<sub>duty</sub>~1) in smallest halos (Ewall-Wice et al.).



- Excess in the z=0 radio background reported by ARCADE-2 (left) and LWA (Dowell & Taylor).
- Only ~10% from high-z needed to cause EDGES-like signal (Feng & Holder). Maybe this isn't crazy?
- If produced by BHs, require efficient accretion (f<sub>edd</sub>~1, f<sub>duty</sub>~1) in smallest halos (Ewall-Wice et al.).
- If associated with star formation, require ~10<sup>3</sup>x boost in low-frequency production efficiency per SFR (Mirocha & Furlanetto), even neglecting IC losses (Sharma 2018).















# Part III: New hints about galaxy formation as well?

#### EDGES in Context



Mirocha, Furlanetto, & Sun (2017)

#### EDGES in Context



#### EDGES in Context



#### Engineering a Solution

#### Q. What must SFE be to fit EDGES signal?



## Engineering a Solution

#### **Q. What must SFE be to fit EDGES signal?**



#### \*Implies boost in number counts in future JWST UDF.

- Fit UVLF and EDGES simultaneously, vary SFE parameters, L<sub>X</sub>-SFR relation. Limit to atomic cooling halos.
  - Allow excess cooling (parametric approach)
  - Generate radio
    background assuming L<sub>R</sub>
    ~ f<sub>R</sub> x SFR.



- Fit UVLF and EDGES simultaneously, vary SFE parameters, L<sub>X</sub>-SFR relation. Limit to atomic cooling halos.
  - Allow excess cooling (parametric approach)
  - Generate radio
    background assuming L<sub>R</sub>
    ~ f<sub>R</sub> x SFR.



- Fit UVLF and EDGES simultaneously, vary SFE parameters, L<sub>X</sub>-SFR relation. Limit to atomic cooling halos.
  - Allow excess cooling (parametric approach)
  - Generate radio
    background assuming L<sub>R</sub>
    ~ f<sub>R</sub> x SFR.



- Fit UVLF and EDGES simultaneously, vary SFE parameters, L<sub>X</sub>-SFR relation. Limit to atomic cooling halos.
  - Allow excess cooling (parametric approach)
  - Generate radio
    background assuming L<sub>R</sub>
    ~ f<sub>R</sub> x SFR.











#### Conclusions

- Viable charged DM parameter space is quite limited.
- Radio background explanation puts a lot of pressure on astrophysical sources, both to generate a strong enough background at z > 20 and to shut down beyond z ~ 10-15.
- The timing of the EDGES signal is also odd, implying there is more star formation at z > 10 than simple models predict, independent of amplification mechanism.



# Backup Slides

# The Foreground Problem



This is a really hard measurement.

# The Foreground Problem



This is a really hard measurement.

# The Foreground Problem



This is a really hard measurement.
# Challenges Thus Far

#### Hills, Kulkarni et al.



#### spurious instrumental artifacts?

dust?

# Challenges Thus Far

## http://loco.lab.asu.edu/download

Hills, Kulkarni et al.



### spurious instrumental artifacts?

dust?