Direct Dark Matter Searches: Experimental

Overview

remember kids: always ponder your titles...

Rafael F. Lang Purdue University rafael@purdue.edu IPA2018, October 2018

Direct Dark Matter Searches: Stuff Robert and Yoni didn't already talk about on Monda

Rafael F. Lang Purdue University rafael@purdue.edu IPA2018, October 2018

Conclusions

Experiments are probing our most popular models

Clear path towards the neutrino floor, but patience! Not before 2030

Lots of new physics channels, from WIMPs and other dark matter particles to solar, galactic and other neutrino signals

Possible Dark Matter Masses

90 orders of magnitude

10-21eVμeV meV eV keV MeV GeV TeVMMMRafael Lang: Stuff Robert and Yoni didn't already talk about on Monday4

Possible Dark Matter Masses

Axions WIMPs axion-like particles thermal relics

sterile v

90 orders of magnitude

10-21eVμeV meV eV keV MeV GeV TeVMMMRafael Lang: Stuff Robert and Yoni didn't already talk about on MondayMonday5

Possible Dark Matter Masses

NEWS-G XENON10 Eöt-Wash XMASS MAGIS CRESST-II Sabre XENON100 CASPEr CRESST-III COSINE LUX DMRadio DAMIC LBECA PandaX DarkSide-50 SENSEI PICO XENON1T Deap3600 ABRACADABRA SF-He SuperCDMS XENONnT LZ DarkSide-20k ADMX HAYSTAC $GaAs/Al_2O_3$ Gen3/DARWIN MADMAX bosonic / field fermionic / particle ¦ composite

90 orders of magnitude

M_{Planck}

6

10⁻²¹eV μeV meV eV keV MeV GeV TeV M_{Pl} Rafael Lang: Stuff Robert and Yoni didn't already talk about on Monday

WIMP Detection: Target

fill in your own prior, e.g: cMSSM Higgs-mediation

Z-mediation through box

Z-mediation at 10⁻¹⁰ abundance

WIMP Detection: Status

Best limits all from a xenon experiments

Low masses: fight threshold

High masses: number density decreases as mass density is fixed

WIMPs

- Higgs-mediation
- Z through box
- SUSY etc

Continue to provide strongly motivated prior

Dual-Phase TPC: e.g. XENON1T

3D position information S2 hit pattern: $\delta r < 2 \,\mathrm{cm}$ drift time: $\delta z < 500 \,\mu \text{m}$

Self-Shielding in Xenon

Reduce background with exp(-diameter/ λ_{v})

ER & NR Band calibration

Electronic recoils,

e.g. from ²²⁰Rn

Nuclear recoils, e.g. from DD generator or ²⁴¹AmBe

The Secret of Success

Redundant event information: can fight detector artefacts

(collect ~2.5MB per event)

Liquid TPCs

Technology of choice for WIMPs: monolithic, scalable, cheap, redundant event information

a

XENON1T Science Run 1

Rafael Lang: Stuff Robert and Yoni didn't already talk about on Monday

17

XENON1T Science Run 1

Rafael Lang: Stuff Robert and Yoni didn't already talk about on Monday

12562

1805.

XENON

Yet another limit...

XENON1T Results

1 year, 1.3t fiducial mass:

world leading limit above ~8GeV.

sigh

Upgrade: XENONnT

- Shut down XENON1T this year
- Rapid upgrade: 8t total 6t active >4t fiducial start 2019
- Re-use most sub-systems

LZ @SURF

10t of LXe: 7t active 5.6t fiducial

start 2020

"Neutrino Floor" Far, Far Away

strong program to improve factor 100

WIMP Gap Requires Generation-3

strong program to improve factor 100

current program leaves a WIMP gap: requires nextgeneration detector!

Digging Down

Excellent prospects with new experiments starting next year

Require dedicated generation-3 experiment to probe down to neutrino floor

Solar ⁸B Neutrinos ~2023

here: neutrinos scattering off nuclei simulation: 1000d LZ 5.0

Supernova Neutrinos

few second burst $\nu_x + N \rightarrow \nu_x + N$

With SNEWS: XENON1T sensitive (30) across entire Milky Way

flavor-independent: complementary information

Double-Electron Capture: XMASS

 $2e^{-} + {}^{124}\text{Xe} \rightarrow {}^{124}\text{Te} + 2\nu_e + 64 \text{ keV}(\text{E}_{2\text{K}})$

- $2\nu\beta\beta$ the other way around: help nuclear matrix models. ¹²⁴Xe abundance 0.095%
- XMASS: 800.0 d, fiducial 327kg ^{nat}Xe = $311g^{124}Xe$

Double-Electron Capture: XENON1T

better resolution, 1ton-year exposure, getter removes ¹²⁵I

¹³⁶Xe $0\nu 2\beta$ with ^{nat}Xe Target

 136 Xe \rightarrow 136 Ba + 2e⁻ (abundance 8.9%, i.e. ~4t in target) Requires large dynamic range of detector

Neutrinos

Direct dark matter experiments become sensitive to solar neutrinos...

...but the neutrino floor is far and requires Generation-3

Plus: galactic supernovae, double electron capture, neutrinoless double-beta decay!

Extrapolate to Higher Masses

Direct Detection at High Mass

35

Probing High Masses

Requires dedicated analyses

Probe even around Planck mass

Electron Scattering in Xenon

Detect even individual electrons liberated anywhere in 2000kg of Xenon:

But backgrounds not yet tackled:

Rafael Lang: Stuff Robert and Yoni didn't already talk about on Monday

00

XEN

LBECA

Build dedicated, conventional detector to tackle backgrounds and probe Dark Matter

A.Bernstein, J.Xu, P.Sorensen, K.Ni, R.Essig, M.Fernandez-Serra, Rafael

Promising for fast results even below 10MeV

Bringing discovery-level science back to the universities

Much more than just WIMPs!

Dark Matter:

- spin-independent WIMPs
- spin-dependent WIMPs
- EFT couplings and inelastic WIMPs
- GeV and MeV WIMPs ("S2-only")
- Planck mass dark matter
- Migdal & Bremsstrahlung searches
- Annual modulation searches
- Magnetic Inelastic WIMPs
- inelastic scattering
- axial-vector coupling
- Mirror & luminous DM
- Axion-like particles
- SuperWIMPs
- Dark photons
- Planck-mass Dark Matter

Neutrinos:

- solar pp neutrinos
- ⁸B solar neutrinos
- galactic supernovae
- CNO neutrinos
- neutrino oscillations
- sterile neutrinos
- neutrino magnetic moment
- $2\nu\beta\beta$ decay of ¹³⁶Xe
- 0νββ decay of ¹³⁶Xe
- double-EC on ¹²⁴Xe

Other:

- solar axions
- fractionally charged particles

Conclusions

- Liquid Xe TPCs became versatile science machines
- Generation-3 detectors
 required to cover WIMPs
- Much-needed diversification of experimental program is happening

